
Statistics and the Future of the Antarctic Ice Sheet 

by Murali Haran, Won Chang, Klaus Keller, Robert Nicholas and David Pollard 

Introduction 

One of the enduring symbols of the impact of climate change is that of a polar bear drifting in 

the sea, alone on its own piece of ice. For those who are left untouched by the loneliness of 

drifting polar bears, images of partially submerged lands and the devastation wrought by storm 

surges showcase some potentially frightening impacts of sea level rise on human life. The threat 

of sea level rise, in turn, is linked to the melting of ice sheets. Ice sheets are therefore important 

to understanding our planet as well as learning about how our future may be impacted by 

climate change. A promising approach to improving our understanding of ice sheets and derive 

sound projections of their future is to combines ice sheet physics, statistical modeling, and 

computing.  

 

First, what exactly is an ice sheet? It is an enormous mass of glacial land ice, more than 50,000 

square kilometers in extent. The Antarctic ice sheet extends over 14 million square kilometers 

while the Greenland ice sheet extends over 1.7 million square kilometers. To put this in 

perspective, the area covered by the Antarctic ice sheet is comparable to the continental United 

States and Mexico combined. In fact, the Greenland and Antarctic ice sheets contain over 99% 

of the freshwater ice in the world and, roughly speaking, melting the entire Greenland ice sheet 

would result in sea level rise of around 7 meters (23 feet) while if the entire Antarctic ice sheet 

melted, it would result in sea level rise of around 57 meters (187 feet). It is easy to imagine how 

even partial melting of these giant ice sheets can potentially lead to large sea level rise, making, 

for instance, low-lying coastal regions more vulnerable to future storm surges. Hence, a number 

of high profile articles and documentaries have placed the melting of ice in polar regions 

squarely at the center of the discussion of the impacts of climate change. Knowing something 



about how ice sheets are changing has very practical consequences, for instance when making 

decisions about how and where to build infrastructure on the coasts, and how to assess risk to 

property due to climate change in the future. Risk is defined in terms of probabilities (risk of an 

event=expected loss under a probability distribution on that event). Hence, to carefully describe 

the risks associated with a climatic event, we need to estimate future probabilities. Studying the 

future of ice sheets in a statistically sound fashion is thus of interest both from a scientific as 

well as policy and decision-making perspective.  

 

 

Figure 1: The West Antarctic Ice Sheet, viewed from the Amundsen Sea, with important 

glaciers highlighted 

How do scientists study the future of ice sheets? Also, what role (if any) does statistical thinking  

play in studying ice sheets? A careful study of ice sheets involves four main pieces: (1) physics 

for modeling the behavior of the ice sheets over time, (2) computing and applied mathematics 

(mostly solving differential equations) for translating the model into computer simulation code, 

(3) data sets that are informative about the past and current state of the ice sheet and related 



climate variables, for instance ocean temperatures and snowfall accumulation, and (4) statistical 

methods that combine information from the physical model with observations of the ice sheet. 

This is an interesting and challenging area of research because sound scientific research 

requires an interdisciplinary collaboration between ice sheet modelers and statisticians. The 

statistical challenges involve combining information from disparate sources such as the physical 

model and observational data sets and the size and complexity of the data available requires 

careful attention to computing. This article is intended to give readers a taste of some of the 

interesting scientific questions surrounding ice sheets, the resulting statistical problems, as well 

as an outline of a statistical method that can be used to solve this problem. Our discussion is 

broadly targeted at ice sheets but we focus here predominantly on the West Antarctic Ice Sheet 

(WAIS) and PSU3D-ICE, Pollard and DeConto’s ice sheet model.  

 

The above four aspects involved in the study of the past, present and future of ice sheets are 

common to many other research areas in climate science where models, uncertain parameters 

and multiple sources of observations need to be brought together to understand the past, 

present and future state of the climate. In fact, similar statistical problems arise often in other 

scientific disciplines where complex dynamical models are used, and the applications of the 

statistical methods of emulation and calibration we describe here even extend to many 

manufacturing and engineering processes. 

 

The Physics of Ice Sheets 

Ice sheets are created by long-term snowfall accumulation. When snowfall exceeds snow melt 

each year, it builds layer upon layer of snow, the weight of which compresses the underlying 

snow to form ice. Over thousands of years, this has resulted in massive ice sheets that can be 

thousands of feet thick. The flow of the ice sheet is due to the height of the thick ice and snow. 



Ice sheet experts have worked extensively on building physical models that describe how ice 

sheets flow and evolve over time. Figure 2 below provides a simplified view of the physics 

involved. We see, for instance, that the ice flows downslope from the highest central 

regions toward the edges of the ice sheet.  

 

Figure 2 provides a sense of how the ice sheet rests on the 

continental crust, and how the ocean interacts with the ice sheet. The 

multiple parallel curves represent different ice flow lines, 

corresponding to different heights of ice (central regions of the West 

Antarctic Ice Sheet (WAIS) are over 2,000 meters high).  Gravity is a 

fundamental driver of the flow, causing stresses and deformation that 

tend to flatten the sheet surface over tens of thousands of years. 

 

The basic physical principle underlying the ice-sheet is the 

conservation of mass, which ensures that the local thickening or 

thinning of ice is balanced by ice added or removed.  Ice can be added 

by snowfall, and is removed by ablation, the process by which snow 

or ice melts and flows away in stream-like channels and crevasses, 

evaporates, or is blown away by the wind. 

 

The underlying topography as well as the slipperiness of the bedrock 

surface also influences the behavior of the ice sheet.  Overall the 

ice sheet surface tends to be a smooth dome, but high peaks may 

protrude though the ice exposing the land in places. 

 

The edge of the ice sheet is particularly vulnerable as it interacts 



with the ocean.  Where the ice sheet meets or abuts the ocean it can 

form a vertical cliff, or can continue as an ice shelf, a floating 

table of ice hundreds of meters thick flowing out toward the open 

ocean.  Sometimes part of the ice shelf breaks off (known as 

calving) to create floating icebergs. Individual calving events can 

be dramatic and spectacular especially if the ice cliff abutting the 

ocean is relatively tall. 

 

 

 

Figure 2 from <www.snowballearth.org> (courtesy Paul Hoffman)  

The arrows in the figure illustrate the direction of ice flow. Ice accumulates on top 

through precipitation (snowfall), and flows downward due to gravity. Ablation means the 

melting or evaporation of ice. This cartoon illustrates how the ice sheet rests (and slides) 



on the continental crust, and points out its important interaction with the ocean waters. 

Parameters (inputs) that determine how the ice sheet slides, and how it interacts with the 

surrounding ocean waters, are key to future projections of the ice sheet. 

 

This brief outline of ice sheet dynamics shows that there are many inputs or parameters of the 

model that, when changed, can have a considerable influence on ice-sheet behavior. For 

instance, the slipperiness of the bedrock surface (the amount of friction between the ice sheet 

and the bedrock surface) affects how fast the ice sheet slides over it. The ocean melt coefficient 

is a parameter that describes the sensitivity of the ice sheet to temperature changes in the 

surrounding ocean. Hence, changes to this parameter will cause the ice sheet to react very 

differently to the changes in the surrounding ocean temperatures. Different parameter values 

will result in very different projections of the future of the ice sheet. Figuring out reasonable 

parameter values to use is therefore a very important research problem, and it makes sense to 

find parameter values that allow the ice sheet model to credibly reproduce both the past and 

current behavior of the ice sheet. In fact, parameter inference is precisely the problem we focus 

on here. Careful science requires that we not only provide “best” values of the parameters (point 

estimates) but that we also provide uncertainties about the parameter values.  

 

Computer Models for Studying Ice Sheets  

In order to study how the ice sheet behaves under various parameter settings and the impact of 

external climate variables or external forcings (physics external to the system that impact the ice 

sheet) on the ice sheets, scientists create computer programs that incorporate the physics of 

the ice sheet as well as the various forces acting on it. These days using computer simulations 

to learn about the behavior of an ice sheet in response to internal and external conditions is 

common in the earth and atmospheric sciences and is often used in many science and 



engineering problems. In our work on the West Antarctic Ice Sheet (WAIS), we use the PSU3D-

ICE model which strikes a balance between detailed physical modeling and computational 

efficiency. This balance allows it to produce realistic long-term behavior of the ice sheet without 

attempting to incorporate very high resolution physical modeling. This allows the long runs to be 

accomplished with a reasonable amount of computational effort. There are many decisions that 

need to be made about how to run the ice sheet model. For instance, an important choice is to 

determine how far back we start the ice sheet model to “spin it up” to the present time (we start 

it 40,000 years before present). The spin up phase of the model involves running it until it 

reaches a “steady state” that does not, hopefully, depend too much on the initial values chosen 

to run the model. Another choice is the kind of external forcings (physics external to the system 

that impact the ice sheet) to use on the ice sheet dynamics; we use well established data sets 

and models to provide the atmospheric and oceanic external forcings. The computer model 

output is in the form of a spatial grid. We therefore also need to determine the resolution at 

which we want model output, with a higher resolution typically taking more computational time. 

Here, we simply obtain information that is close to the same scale at which the observational 

data sets (described below) are available. Finally, and crucially, we need to determine a study 

design that suggests which parameter values to use when running the model since we are 

constrained by computational considerations. 

 

Ice Sheet Data  

Detailed modern observations of WAIS are constructed combining many different types of 

observations, including satellite altimetry, airborne and ground data surveys, and ground radar 

surveys. These data are very useful for learning about (referred to as constraining in the 

geosciences literature) important parameters of the model. However, in order to obtain better 

projections of WAIS on the scale of hundreds to thousands of years in the future, it is important 



to also use the long-term behavior of the ice sheet to learn about the parameters. The 

parameters we infer must be capable of producing realistic behavior of the ice sheet over much 

longer periods of time. Data from the distant past, going back hundreds of thousands of years or 

more, are reconstructions of the ice sheet’s past. These are based on recent measurements 

such as sonar data about ocean floor features as well as shallow sediment cores, which have 

been used by researchers to provide maps of approximate grounding lines – the location where 

the ice sheet transitions from lying on bedrock to hanging over the ocean -- at 5,000 year 

intervals from 25,000 years ago to the present. Hence, these resulting data are in the form of 

time series.  

 

What Makes This a Challenging Statistics Problem?  

Hopefully it is already clear that this is a statistical problem. Multiple data sets are involved, after 

all, and there is an interest in inferring parameter values and making predictions. Let us 

consider two important scientific questions: (1) Given the recent satellite observations of the ice 

sheet and the paleo-reconstructed data about the ice sheet in the distant past, what are the 

likely values of the ice sheet model parameters? (2) What can we say about the future of the ice 

sheet based on what we know about the past? We can translate the first question into the 

language of statistics and probability as follows: Given the two data sets and what we know 

about the ice sheet model by running it at various parameter settings, what is our estimate of 

the probability distribution of the model parameters? The probability distribution captures our 

knowledge about the parameters given what we knew about the parameters (prior scientific 

information) and what information the model runs and the observations provide about the 

parameters. This fits naturally into the language of Bayesian inference which allows us to 

combine prior information with information from the data to obtain a posterior distribution of the 

parameters.  An advantage of this approach is that once we have an estimate of the posterior 



probability distribution of the model parameters, this can be used to answer the second 

question. Essentially all we need to do is to see what the ice sheet model projections look like at 

various parameter settings, and weight the probability of these projections according to the 

posterior distribution of the parameters. To summarize, we have: (1) a deterministic computer 

model that describes the ice sheet behavior as a function of parameters, but we only have 

simulations of this model at a limited number of parameter settings, and (2) observations of the 

ice sheet, both modern satellite observations as well as paleo-reconstructions of the ice sheet 

from the distant past. We need to formulate a statistical model that combines all of this 

information, while allowing for measurement errors and imperfections in the computer model. 

  

The formulation of the statistical problem above may seem pretty standard, except for one 

important twist. For Bayesian inference we need both a prior distribution of the parameters as 

well as a probability model that connects the observations with the parameters. More 

specifically, the probability model provides a probability distribution for the observations – in this 

case the satellite data and the paleo-reconstructed data – at each parameter value. This 

probability model is used to obtain a likelihood function, and then the rest of it is (modulo 

computational challenges), routine Bayesian inference. Here the only connection we have 

between the parameters and the observations is via the ice sheet model. This poses some 

challenges: (1) the model is deterministic, not probabilistic, so it does not provide a probability 

model on its own; (2) we only see the model output at a few (relatively small number of) 

parameter values; and (3) we know that the ice sheet model is an imperfect representation of 

the observations. The problem and an outline of how we can think about solving it, is 

summarized in Figure 3 below. What makes the problem challenging is the fact that the output 

from the model is high-dimensional and in the form of spatial or temporal data. These data are 

always not easily modeled using Gaussian models. New computationally efficient statistical 

methodology is therefore necessary for addressing these issues.   



 

Figure 3: Parameters and initial values drive the ice sheet model. Its output describes the 

behavior of the ice sheet through time. Because this is an imperfect model, we account 

for noise (measurement error) and biases (missing processes in the model) to develop a 

model for the ice sheet observations. Note that the ice sheet model is a “black box” -- we 

only see model output for any given set of parameters. Example parameters include 

those that determine the basal sliding of the ice sheet, and the sensitivity of the ice sheet 

to the surrounding ocean water temperatures. Emulation approximates via a Gaussian 

process how the ice sheet model above maps parameters into model output. This 

approximate model combined with a model for error and bias is used as a statistical 

model for the ice sheet data (observations) on the far right. 

Ice Sheet Model Emulation and Calibration 

How do we solve this problem? We can do this in two main stages. We first approximate the ice 

sheet model with a statistical model, that is, develop a statistical model that can predict how the 

ice sheet model will behave at new parameter values. Think of this problem as one where we 

need a flexible regression-type approach: given lots of predictors (various parameter settings) 

and corresponding model output (responses), we can predict model output at new predictors 

(any new parameter setting), along with some uncertainty about the model output. This kind of 

uncertainty may be referred to as epistemic uncertainty, meaning that the uncertainty arises 

from our lack of knowledge (episteme is Greek for “knowledge”) about what the model will do, 

not the fact that there is anything random associated with the model (it is deterministic!). This 

process of approximating the model is called emulation. Emulation results in a probability 

model that links the parameters of the ice sheet model to the output of the ice sheet model. The 



statistical model we use for emulation is a Gaussian process, a popular model in spatial 

statistics, which well suited to interpolating functions. Consider the simple example in Figure 4 

where we consider a collection of random variables that are a function of a single parameter. 

There are of course an infinite number of these random variables on any given range of 

parameter values, say between 0 and 1. A Gaussian process model states that any finite 

collection of random variables, for example the six function values between 0 and 1 (black dots 

on Figure 4), has a joint normal distribution. Crucially, the dependence among the random 

variables decreases as a function of the distance between them, making two random variables 

that are close to each other (in parameter value) more dependent, and hence more alike. This 

suggests how Gaussian processes provide a nice approach for interpolation – the predicted 

value for a random variable at any parameter value, say a function value in between the six 

black dots, is more like (more dependent on) values that are close to it, and depends less on 

values that are far from it. The precise dependence between the random variables at various 

parameter values is controlled by a covariance function that describes how covariances change 

as a function of distance. Hence, Gaussian processes provide a simple and effective way to 

interpolate a function, using dependence, without the need to determine a specific form for the 

function. The idea we just outlined extends in principle to functions of multiple parameters as 

well.  Figure 4 (right) shows what a Gaussian process interpolator produces for a toy example 

with only one input parameter.  

 



 

Figure 4: Emulation for a toy example. Left: Black dots correspond to input parameters for 

which the computer model was run. Right: Red dashed lines are interpolations by a Gaussian 

process – they provide approximate computer model output at every parameter value. The 

dotted red curves correspond to uncertainties; there is greater uncertainty as we get further 

from places where we have data.   

 

We need the model for the observations to allow for the fact that the ice sheet model is not a 

perfect representation of the observations of the ice sheet. For this, we add a component to the 

model for errors (variability in the observations) and sources of systematic biases, called a 

model-data “discrepancy” term. Once we put these pieces together, we have a model that is 

potentially useful for observations of the ice sheet; this serves as the probability model for the 

observations given the parameters. Figure 5 shows how calibration works for a toy example 

where the model output is just a scalar and the observation consists of just a scalar as well. 

 

Emulation Step: A Simple Example
We use a statistical model called a Gaussian process. This
model is a fast emulator (approximation) of the computer model.

Computer model output (y-axis) Emulation (approximation)
vs. input (x-axis) of computer model using GP
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Calibration Step: A Simple Example
We use statistical methods called Bayesian inference and

Markov chain Monte Carlo: Use emulator (from before) and
observations to learn about parameters.

Combining observation Posterior PDF of ✓
and emulator given model output and observations32 / 42



Figure 5: Calibration for a toy example. Left: The blue horizontal line represents a single data 

point. Calibration attempts to find parameter values that are compatible with that observation, 

while also taking into account uncertainties due to variability represented by the blue dotted 

lines). Right: Bayesian inference provides the (posterior) distribution on the right, which 

summarizes what we know about the parameter. Notice that there are three peaks in this 

density, corresponding to three black dots (left figure) closest to the observations.  

 

We can summarize the entire approach as follows.   

(1) Generate an ensemble of model runs: Run the ice sheet model at various parameter 

settings. This gives us pairs of parameters and model output, just like in a regression 

problem. 

(2) Emulate the ice sheet model: Use a statistical model to approximate the relationship 

between the parameters and the model output. This is similar to fitting a flexible 

regression model, except the response is multivariate, spatial (satellite data) and 

temporal (paleo-reconstructed data).  

(3) Construct a model for the observations: This is the fitted Gaussian process model + a 

model for errors and biases. We only specify the form of the errors and biases, their 

parameters still need to be inferred from the data (from Step 4 below). 

(4) Calibration: Fit the above model to the observations. This gives us a distribution on the 

parameters, while also providing some information on the errors and biases.  

(5) Project the future of the ice sheet: Use the posterior distribution on the parameters to 

run the model forward and provide the future of the ice sheet in the form of a (“posterior 

predictive”) distribution.  

 

Of course, here the model output is quite a bit more complicated than a standard regression 

response because the model output is a map of the current ice sheet (this is a spatial data set) 



along with information about the ice sheet’s past over time (this is a time series data set). Also, 

the relationship between the parameters and the model output can be quite complicated. There 

are additional complications because the data tend not to be Gaussian, for example the ice 

sheet data are modeled as presence-absence. We use a spatial generalized linear model 

version of a Gaussian process, which allows us to approximate the deterministic model with 

non-Gaussian output by a probabilistic model. The high-dimensionality of the data also 

necessitates some dimension-reduction approaches. We use a principle components analysis-

based approach. The Gaussian process methodology is remarkably flexible, allowing us to 

emulate the ice sheet model quite well. How well it does can be studied by using cross-

validation, for instance by leaving ten percent of the model runs (parameter settings) out when 

fitting the Gaussian process model to the ice sheet model runs, then looking at what the 

Gaussian process model predicts for the parameter settings that were left out. If it resembles 

what the model actually outputs at those parameter settings, it suggests that emulation is 

working well. Figure 6 illustrates this well. 

 

 

Figure 6: Comparison of actual model output (left) with emulated model output (right). 

Blue corresponds to “no ice sheet” and white corresponds to “ice sheet presence”. The 

emulator is able to mimic the model run very well. 

 

Model Output from Run No.67 Emulated Output for Run No.67

Model Output from Run No.491 Emulated Output for Run No.491

Figure 2: Two examples of leave-10-percent-out cross-validation results to study the performance
of our logistic PCA based emulator. The gray pixels show ice-covered locations. (a) Comparison
between the original (left) and the emulated (right) ice coverage patterns for model run no. 67.
(b) The same comparison for model run no. 491. The graphical comparison shows that the
emulated model output (right panel) approximates the original model output (left panel) fairly
closely. Similar results hold for the other model runs.
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Results  

When we use emulation and calibration methods to these data and models we obtain parameter 

estimates and resulting probability distributions for future projections. This is summarized in 

Figure 7, which shows the distribution of potential sea level rise due to the melting of WAIS in 

500 years. Calibration with both the modern and paleo data results in different sea level rise 

projections (red curve, “current approach”) when compared to projections with calibration using 

just the modern data (Dash-dot blue curve “modern obs only”). In particular, using both sources 

of data eliminates any possibility of there being no sea level rise, that is, the value 0 is included 

in the distribution for just the modern data, while it is essentially excluded when both data are 

used.  

 

Figure 7: Posterior predictive distribution of projected ice sheet contribution to sea level 

rise. Adding the paleoclimate data results in a much sharper projection (red curve) than 



when only modern satellite data are used (blue curve). In particular, the possibility of no 

(zero) sea level rise due to ice volume change is virtually eliminated in the red curve.  

(Reproduced from Chang et al. (2016) The Annals of Applied Statistics) 

 

Our research shows that sea level rise is inevitable, though our results are relatively 

conservative in stating that it is most likely to be around 2 meters. Even 2 meters of sea level 

rise will leave many low-lying regions in the world completely submerged, and would put many 

more areas at high risk of potentially devastating storm surge damage, for instance the 

Netherlands and the Maldives, and future storm surges are likely to cause much greater 

devastation through flooding. Recently-developed models that incorporate a few additional 

features of the ice sheet dynamics suggest that sea level rise may be even more dramatic.  

 

Caveats  

With all the complicated sources of information that have gone into this research, we have to be 

cautious about our conclusions. The ice sheet model does not include all the processes that 

affect the ice sheet. There are uncertainties in the paleo data that have not been accounted for. 

Furthermore, the ice sheet model will behave differently for different initial values; ideally, we 

would incorporate uncertainties due to this variation too. Similarly, there are a number of 

different ways in which external forcings, climate variables that are external to the ice sheet, 

may change over time. These also impact how the ice sheet behaves. Incorporating all these 

uncertainties is daunting largely because of the computational challenges involved. Hence, 

whatever we say about the behavior of the ice sheets in the future is necessarily imperfect. 

Having said that, the information we have summarized here incorporates cutting edge physics, 

multiple observation data sets, and pieces the information together in a principled manner. 

Hence, in spite of all these caveats, we have made progress! To quote Einstein, all our science, 



measured against reality, is primitive and childlike -- and yet it is the most precious thing we 

have.  

 

 

  



Further Reading:  

(1) General reading on ice sheets: From the National Snow and Ice Data Center: 

https://nsidc.org/cryosphere/sotc/ice_sheets.html 

(2) General reading on Antarctic glacier physics: http://www.antarcticglaciers.org/modern-

glaciers/introduction-glacier-mass-balance/ 

(3) Much of the statistical methodology outlined here is based on this paper: Chang, W., 

Haran, M., Applegate, P. and Pollard, D. (2016) "Improving Ice Sheet Model Calibration 

Using Paleoclimate and Modern Data," Annals of Applied Statistics, 10, 4, 2274--2302. 

(4) The relationships between ice-sheet projections, flood risks, and decision-making are 

discussed, for example, in Wong, T., A. Bakker, and K. Keller (2017) Impacts of 

Antarctic Fast Dynamics on Sea-Level Projections and Coastal Flood Defense. 144, 2, 

347-364; Bakker, A., D. Louchard, and K. Keller (2017) Deep uncertainties surrounding 

sea-level projections: Sources and Implications. Climatic Change Letters, 140, 3, 339–

347; Diaz, D., and K. Keller (2016) A potential disintegration of the West Antarctic Ice 

Sheet: Implications for economic analyses of climate policy. American Economic 

Review, 106, 5, 607-611. 
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