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A Bayesian change point model

Consider the following hierarchical changepoint model for the number of
occurrences Yi of some event during time interval i with change point k.

Yi|k, θ, λ ∼Poisson(θ) for i = 1, . . . , k

Yi|k, θ, λ ∼Poisson(λ) for i = k + 1, . . . , n

Assume the following prior distributions:

θ ∼Gamma(0.5, b1 = 100) (pdf=g1(θ))

λ ∼Gamma(0.5, b2 = 100) (pdf=g2(λ))

k ∼Uniform(2, . . . , n− 1) (pmf =u(k))

k, θ, λ are conditionally independent and b1, b2 are independent.
Assume the Gamma density parameterization Gamma(α, β) = 1

Γ(α)βαx
α−1e−x/β

Inference for this model is therefore based on the 3-dimensional posterior
distribution f(k, θ, λ|Y) where Y=(Y1, . . . , Yn). The posterior distribution
is obtained up to a constant (that is, the normalizing constant is unknown)
by taking the product of all the conditional distributions. Thus we have

f(k, θ, λ|Y) ∝
k∏
i=1

f1(Yi|θ, λ, k)

n∏
i=k+1

f2(Yi|θ, λ, k)

× g1(θ)g2(λ)u(k)

=
k∏
i=1

θYie−θ

Yi!

n∏
i=k+1

λYie−λ

Yi!

× 1

Γ(0.5)b0.51

θ−0.5e−θ/b1 × 1

Γ(0.5)b0.52

λ−0.5e−λ/b2

× 1

n− 2
1(k ∈ {2, 3, . . . , n− 1})

where 1(k ∈ {2, 3, . . . , n − 2}) is an indicator function, meaning it is 1 if
k ∈ {2, 3, . . . , n− 2} and 0 otherwise.

Note that it is easy to add more layers to the model and the priors if
that is of interest, for instance b1, b2 could themselves be treated as random
variables with prior (“hyperprior”) distributions.


