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Abstract. Current climate sensitivity (CS) estimates are highly uncer-10

tain. Quantifying the sources of this uncertainty is relevant to the design of11

climate policies. Here we isolate and evaluate the role of internal climate vari-12

ability in driving the climate sensitivity uncertainty using observation sys-13

tem simulation experiments. We use ensemble runs of the University of Vic-14

toria Earth System Climate Model (UVic ESCM) spanning the last two cen-15

turies. We first construct pseudo-observations of global mean temperature16

and ocean heat content from the model output at a specified ’true’ CS, and17

then re-estimate the CS using an inverse method. Our results suggest that18

unresolved internal climate variability is a key driver of current CS uncer-19

tainty (as measured by the 68% credible interval). We demonstrate that the20

internal variability can result in a large discrepancy between the best CS es-21

timate and the truth. Since current best CS estimates based on the observed22

warming all rely on the same variability, they may be considerably higher23

or lower than the true value. The estimation uncertainties increase at higher24

climate sensitivities, suggesting that a high CS might be difficult to detect25

due to the effects of observational errors and internal climate variability.26
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1. Introduction

Future climate projections strongly depend on climate sensitivity (CS) [Matthews and27

Caldeira, 2007; Knutti and Hegerl , 2008]. CS is the equilibrium global mean near-surface28

temperature change for a doubling of atmospheric CO2 concentrations [Andronova et al.,29

2007; Knutti and Hegerl , 2008]. Many recent studies attempted to estimate climate sensi-30

tivity [Forest et al., 2002, 2006; Knutti et al., 2003; Tomassini et al., 2007; Drignei et al.,31

2008; Holden et al., 2010; Olson et al., 2012; Urban and Keller , 2010, and others], yet this32

quantity remains highly uncertain [Hegerl et al., 2007; Edwards et al., 2007].33

Several sources contribute to this uncetainty. They include (i) climate model error, (ii)34

unresolved internal climate variability, and (iii) observational error. We refer to the sum35

of these processes as ’unresolved climate noise’. Quantifying the relative contribution of36

these sources of uncertainty is of considerable policy relevance. Here we focus on the role37

of the unresolved internal climate variability. The unresolved internal climate variability38

is the part of the observed internal climate variability record that a climate model can39

not reproduce.40

We use observation system simulation experiments (OSSEs) to analyze the role of inter-41

nal climate variability. OSSEs are a common tool in physical and environmental sciences42

to evaluate observation system designs [e.g., Huang et al., 2010a, b; Serra et al., 2011; Za-43

kamska et al., 2011; Urban and Keller , 2009]. In OSSEs, synthetic observations (’pseudo-44

observations’) are first generated from a model with known ’true’ parameter setting by45

adding noise representing observational error. Then the parameters are re-estimated using46

the pseudo-observations.47
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Our starting point is an ensemble of Earth System Model runs spanning the last two48

centuries where climate sensitivity is systematically varied. The ensemble also accounts49

for the uncertainty in ocean mixing and radiative effects of anthropogenic sulfates [Olson50

et al., 2012]. We develop a statistical approximator (’emulator’) of our climate model51

and use it to estimate model output at the parameter values where the model was not52

evaluated. In a suite of OSSEs, we construct pseudo-observations of surface temperature53

(T) and upper ocean heat content (0-700 m, OHC) by contaminating the model output54

at a set ’true’ CS with unresolved climate noise. We then re-estimate CS using the55

pseudo-observations, and an inverse parameter estimation method. We use this approach56

to address three main questions: (i) How well can we constrain CS using observations of57

temperature and upper ocean heat content? (ii) Do the estimation uncertainties depend58

on the input CS? and (iii) What is the contribution of the unresolved internal climate59

variability to the CS uncertainty? We give further details on the Earth System model, the60

parameter estimation methodology, and the experimental design in the following sections.61

2. Methods

2.1. Earth System Model Simulations

We use the University of Victoria Earth System model (UVic ESCM) version 2.862

[Weaver et al., 2001]. Our modified version of the model includes an updated solar ra-63

diative forcing, and implements additional greenhouse gas, volcanic, and anthropogenic64

sulfate aerosol forcings [Olson et al., 2012]. We use an ensemble of 250 historical UVic65

ESCM runs spanning the years 1800-2010. The ensemble samples model parameters CS66

(through an additional parameter f ∗), background vertical ocean diffusivity (Kbg) and a67
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scaling factor for albedoes due anthropogenic sulfate aerosols (Asc) [Olson et al., 2012].68

The ranges for the climate model parameters are given in Table 1.69

2.2. Gaussian Process Emulator

Our methodology to estimate the probability density function for CS given the pseudo-70

observations requires orders of magnitude more UVic ESCM runs than computationally71

feasible to carry out with a typical computational environment (see Section 2.3). We72

overcome this hurdle by using the UVic ESCM emulator described in Olson et al. [2012].73

Emulators are fast statistical approximators to climate models, and are often used in74

climate science [Drignei et al., 2008; Holden et al., 2010; Edwards et al., 2011; Bhat et al.,75

2012; Olson et al., 2012]. Because of their speed, they help to better sample model76

parameter space. Our emulator relies on model output at the 250 parameter settings77

of the ensemble and interpolates the model response to any desired parameter setting.78

Specifically, the emulator estimates global average annual surface temperature anomalies79

T (years 1850-2006) and upper ocean heat content anomalies OHC (0-700 m, years 1950-80

2003). These times reflect the coverage of pseudo-observations (Section 2.3) and are81

consistent with the span of observations from Brohan et al. [2006] and Domingues et al.82

[2008]. The temperature anomaly is with respect to years 1850-1899, while the OHC83

anomaly - to years 1950-2003.84

The emulator works in rescaled model parameter coordinates such that each parameter85

ranges from zero to unity. The emulator models the climate model output as a sum of86

a quadratic polynomial in the rescaled parameters, and a zero-mean Gaussian process87

with an isotropic covariance function (i.e., the smoothness of the Gaussian Process is the88

same in all rescaled climate model parameter directions). We use the emulator to only89
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interpolate the model outputs between the parameter settings. There is no extrapolation90

beyond the range of the ensemble. The emulator provides a reasonable approximation to91

UVic ESCM over the parameter ranges used [Olson et al., 2012].92

2.3. Observation System Simulation Experiments

We conduct several OSSE to address three questions. First, how well can pseudo-93

observations of temperature and upper ocean heat content constrain climate sensitivity94

(in terms of the width of CS probability density function (pdf), and the scatter of the95

estimated CS mode for repeated experiments)? Second, does the estimation skill depend96

on the input CS? Finally, how important is the unresolved internal climate variability for97

the CS uncertainty (as measured by the width and the scatter of the CS pdfs)?98

The OSSEs involve two main parts: (i) Generation of pseudo-observations from the

UVic ESCM given assumed ’true’ CS and (ii) Re-estimating CS given the UVic ESCM

model output, the pseudo-observations, and the inverse parameter estimation method.

In the first stage, we answer the following question: Given a ’true’ CS, and assuming

that the UVic ESCM emulator correctly models climate response to historical forcings,

what time series of temperature and ocean heat content can we theoretically observe? To

this end, we construct pseudo-observations by superimposing unresolved climate noise on

the UVic ESCM emulator output at a pre-defined ’true’ climate parameter setting. The

unresolved noise models the sum of the processes that result in the discrepancy between

the observations and the emulator. Mathematically, the noise n is defined as:

nt,k = yt,k − f̃t,k(θ), (1)
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where y refer to the observations, f̃ is the emulator output, θ is the vector of model99

parameters (Kbg, CS, Asc), t is the time index, and k is the diagnostic index (i.e. k = 1100

for T, and k = 2 for OHC).101

We approximate the unresolved climate noise by an AR(1) process. Exploratory data102

analysis shows that this is a reasonable assumptions for all OSSEs presented here. Specif-103

ically,104

nt,k = ρnt−1,k + wt,k, (2)

where ρ is first-order autocorrelation and w is an independently and identically distributed105

Gaussian noise with the innovation standard deviation σk. This AR(1) process is com-106

pletely specified the by σk and ρk parameters.107

The second stage of the OSSE addresses that question of what CS pdfs we expect for a108

given ’true’ CS value and different realizations of the unresolved climate noise? Following109

Olson et al. [2012], we re-estimate CS using the following statistical model:110

yt,k = f̃t,k + bk + nt,k, (3)

where bk is an additional time-independent bias. To be consistent with Olson et al. [2012]111

we set the bias term for OHC to 0 in this stage. Associated with each parameter value Θ112

= (Kbg, CS, Asc, σT , σOHC , ρT , ρOHC , bT ) there is a likelihood function which describes113

the probability of observations given this parameter value (please see the Appendix).114

The posterior probability for each parameter setting is obtained using Bayes Theorem115

by multiplying the likelihood function by the prior probability for the parameters. We116
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estimate the joint posterior pdf for Θ using Markov chain Monte Carlo (MCMC). The117

MCMC algorithm [Metropolis et al., 1953; Hastings , 1970] is a standard computational118

approach for estimating multivariate posterior pdfs. Our implementation of the method119

follows Olson et al. [2012]. Specifically, our MCMC parameter chains are 300,000 members120

long for each unresolved noise realization. The actual number of required emulator runs121

is higher because only a subset of tested parameter settings are accepted into the chain.122

For each experiment, we repeat the procedure of generating pseudo-observations and123

estimating CS sixty times, each time relying on a different random realization of the124

unresolved climate noise process. Two out of sixty realizations are tested for convergence125

by running the estimation twice with different initial values for the final MCMC chain.126

We have not detected any convergence problems with our algorithm.127

The OSSEs share the same general set-up, with relatively minor differences. Specifi-128

cally, the experiments differ in assumed ’true’ parameter values, in the priors, and in the129

assumptions about the unresolved noise process (Table 2).130

In the first experiment, called ’Standard’, we address the power of the observations to131

constrain CS assuming realistic knowledge of climate uncertainties. Here we use mean132

estimates from the base case of Olson et al. [2012] as ’true’ climate parameters. These133

values are Kbg = 0.19 cm2s−1, CS = 3.1 ◦C and Asc = 1.1. For unresolved climate noise134

we adopt the modes from the base case of Olson et al. [2012]: σT = 0.10 [◦C], σOHC = 2.6135

[×1022 J], ρT = 0.58, and ρOHC = 0.079 (’UVic ESCM Residuals’ in Figures 1 and 2).136

For simplicity, we do not use bias terms when generating pseudo-observations, since the137

95% posterior credible intervals for these terms include zero [Olson et al., 2012]. We use138

uniform priors for all parameters.139
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In the experiment ’Nat. Var.’, we address the following question: What could the140

estimated pdfs look like if the only source of the discrepancy between the model and the141

observations were the unresolved internal climate variability? By the internal climate142

variability we mean the variations in the mean state of the climate on all spatial and143

temporal scales beyond that of individual weather events due to natural internal processes144

within the climate system (as opposed to variations in natural or anthropogenic external145

forcing) [Baede, 2007]. The only difference between ’Nat. Var.’ and ’Standard’ lies in the146

values for the unresolved noise parameters. In the ’Nat. Var.’ experiment we assume that147

the unresolved noise models the internal climate variability only. We also assume that148

the UVic ESCM emulator does not include any substantial internal climate variability.149

Unfortunately, estimating the internal climate variability from observations is con-150

founded by the observational errors, particularly in the case of OHC. Thus, following151

Tomassini et al. [2007] and Sanso and Forest [2009] we approximate the internal vari-152

ability by using the output from General Circulation Models (GCMs). We fit an AR(1)153

process to detrended near-surface annual atmospheric temperature and 0-700 m ocean154

heat content anomalies from preindustrial control runs of three climate models: BCCR-155

BCM2.0 [Ottera et al., 2009], GFDL-CM2.1 [Delworth et al., 2006; Gnanadesikan et al.,156

2006] and UKMO-HadCM3 [Gordon et al., 2000; Pope et al., 2000; Johns et al., 2003].157

The output of these runs was obtained from the World Climate Research Programme’s158

(WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset159

[Meehl et al., 2007]. Specifically, we use run 1 for all three models. We discard the first 100160

years for BCCR-BCM2.0 because the modeled climate appears to be out of equilibrium161

during this period. We detrend the anomalies using robust locally weighted regression162
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[Cleveland , 1979] with the span f of 2/3. When calculating OHC, we first obtain temper-163

atures from potential temperatures, and salinities using the UNESCO equation of state164

[UNESCO , 1981] following Bryden [1973] and Fofonoff [1977]. For this conversion we165

find the ocean pressure field from latitude and depth using simplified equations [Lovett ,166

1978]. The resulting AR(1) properties, averaged across the models, are: σT=0.12 [◦C],167

σOHC = 0.51 [×1022 J], ρT = 0.45, and ρOHC = 0.9 (Table 2, Figures 1 and 2, red168

triangles).169

The ’Higher CS’ experiment explores the effects of different ’true’ parameter values on170

the estimation. It differs from ’Standard’ by using a higher ’true’ input CS. Specifically,171

we adopt Kbg = 0.19 cm2s−1, CS = 4.8 ◦C and Asc = 1.3. These values are selected to be172

consistent with the bivariate joint pdfs presented in Olson et al. [2012].173

The ’Inf. Priors’ experiment examines the role of priors. It uses informative priors for174

CS (Figure 3) and Kbg following the default case of Olson et al. [2012]. ’Inf. Priors’ has175

otherwise the same settings as ’Standard’ (cf. Table 2).176

3. Results and Discussion

Our results suggest that the process driving unresolved internal climate variability is177

a key factor behind the current uncertainty in climate sensitivity estimates. Specifically,178

the average width of the estimated CS pdfs (as measured by the 68% posterior credible179

intervals) in the ’Nat. Var.’ case is only modestly lower compared to the ’Standard’ case180

(Table 2, Figure 3). This indicates that even if we had perfect models of long term mean181

climate, and errorless observations, our CS estimates would still remain very uncertain due182

to the confounding effect of the unresolved internal climate variability. The variability also183

appears to be a key factor in the second-order uncertainty in climate sensitivity (Figures184
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3 and 4). This uncertainty represents the sensitivity of estimated CS pdfs to different185

realizations of the unresolved climate noise, and is measured by the standard deviation186

of CS modes between the realizations. Specifically, while the standard deviation is 1.6 ◦C187

in the ’Standard’ case, it decreases only slightly to 1.4 ◦C in the ’Nat. Var.’ case (Table188

2). Of course, the pivotal role of the internal climate variability should not prevent us189

from investing in better future observational systems. Webster et al. [2008] find, using a190

simplified unresolved climate noise representation, that future observations are expected191

to further reduce the CS uncertainty. Our results suggest that internal climate variability192

presents a substantial obstacle to estimating climate sensitivity. Whether alternative193

approaches that perform joint state and parameter estimation [e.g., Annan et al., 2005;194

Hill et al., 2012; Evensen, 2009] can overcome this challenge, is thus far an open question.195

The CS estimation uncertainties increase at higher CS. Specifically, both pdf width and196

scatter increase considerably compared to the ’Standard’ case (Table 2, Figure 4). This197

suggests that higher climate sensitivities can be difficult to detect if a particular realization198

of climate noise biases the result low. This is consistent with the analytical model results199

of Hansen et al. [1985] which show that the dependency of transient ocean warming on200

climate sensitivity weakens at high CS. Thus, at high CS, a small uncertainty in a single201

ocean surface warming observation implies a larger uncertainty in climate sensitivity. Our202

numerical model shows similar response of atmospheric surface warming to changing CS.203

Note that there are other complicating factors influencing the CS uncertainty, such as the204

aerosol effects specified by Asc.205

Switching from uniform to informative priors (the ’Inf. Priors’ experiment) substantially206

reduces the CS uncertainty (Table 2, Figures 3 and 4). Under the informative priors, the207
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mean estimated CS mode (2.9 ◦C) is somewhat lower than the ’true’ value of 3.1 ◦C. This208

difference is statistically significant (α = 0.05). This might be in part due to the biasing209

effect of the mode of the CS prior, which is lower than the ’true’ value. Both of these210

effects (lower uncertainty but potential biases under narrower priors within the context of211

OSSEs) have been previously found and discussed by Webster et al. [2008]. Thus, while212

using informative priors can be a promising approach, care should be given to choosing213

an appropriate prior.214

Finally, each realization of internal climate variability can result in a considerable dis-215

crepancy between the best CS estimate and the true value (’Nat. Var.’ panels, Figures216

3 and 4). The average discrepancy due to the unresolved internal variability is 1.1 ◦C217

(Table 2). One of the Nat. Var. experiments leads to an estimate of 7.5 ◦C which is 4.4218

◦C higher than the ’true’ value. The distribution of the discrepancy is positively skewed,219

with a longer upper tail (Figure 4). Historical observational constraints on climate sen-220

sitivity (e.g., upper ocean heat content, and surface temperature) are based on a single221

realization of internal climate variability process. Assuming that the biasing effects of222

the observational and model errors are low, this realization can introduce a considerable223

discrepancy between the best CS estimate and the true value. Given that scientific models224

often share similar assumptions and might not be independent (see Pennell and Reichler225

[2011] for a discussion of similarities in GCMs), it is possible that the bias due to the226

internal variability can be in the same direction in studies using different models. As a227

result, current best CS estimates from these datasets may be considerably higher or lower228

than the true value. One of the ways to overcome this under-sampling problem is to use229
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independent constraints from other time periods (e.g., Last Glacial Maximum, Schmittner230

et al. [2011]).231

4. Caveats

Our analysis uses many simplifying assumptions that point to several caveats and open232

research questions. First, our Earth System model relies on a number of approximations233

and neglects some historic forcings (e.g., indirect effects of anthropogenic sulfates; and234

tropospheric ozone [Forster et al., 2007]). Second, we do not fully account for past forc-235

ing uncertainties. Third, we change climate sensitivity using a very simplistic approach236

by varying longwave radiative feedbacks, while shortwave feedbacks are also uncertain237

[Bony et al., 2006]. Fourth, our statistical model does not include any cross-correlation238

among the residuals for T and OHC, and relies on a simple AR(1) structure. However,239

our exploratory data analysis suggests that this structure is a reasonable approximation240

to the underlying statistical processes. Fifth, we use a relatively small number of realiza-241

tions in the OSSEs to keep the computational burden manageable. Sixths, our estimates242

of internal climate variability rely on three climate models. Using more models might243

provide a better sample. Seventh, there is a distinct possibility that climate models con-244

siderably underestimate the observed decadal OHC variability (e.g., Levitus et al. [2001],245

Hansen et al. [2005]; but see AchutaRao et al. [2007] for an alternative view). If true,246

we hypothesize that the CS uncertainty in the ’Nat. Var.’ experiment would increase,247

which would strengthen our conclusion that natural variability is an important driver of248

the uncertainty in climate sensitivity. Last, but not least, we rely on uniform priors in249

most experiments. We have chosen to work with the relatively simple prior specification250

because it still remains an open question to find more informative priors that lead to good251
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bias, and coverage properties. Finally, we explore only a small subset of uncertainty in252

unresolved climate noise and in climate model parameters.253

5. Conclusions

We use Observation System Simulation Experiments (OSSEs) to analyze the effects254

of unresolved internal climate variability on the uncertainty in climate sensitivity. We255

repeatedly simulate pseudo-observations from an Earth SystemModel with a given climate256

sensitivity, and then re-estimate the sensitivity using a Bayesian inversion method.257

We find that unresolved internal climate variability is a key driver of the first-order (as258

measured by the 68% posterior credible internal) and the second-order (as measured by259

standard deviation of the estimated modes) uncertainty in climate sensitivity estimates.260

A single realization of the statistical process driving the variability can introduce a sub-261

stantial discrepancy between a CS estimate and the true value. Since recent CS estimates262

using instrumental temperature and upper ocean heat content observations all rely on263

the same realization, they may be considerably higher or lower than the true CS. The264

unresolved internal variability represents a critical roadblock: our research suggests that265

even if we at present had errorless models and observations, current estimation approaches266

would still result in considerable CS uncertainty. Exploring the power of combined state267

and parameter estimation [e.g., Annan et al., 2005; Hill et al., 2012; Evensen, 2009] to268

confront this challenge is the subject of future research.269

Appendix

This appendix provides the likelihood function for observations if the statistical model270

is given by Equations 2 and 3. We define yk = y1,k, ..., yNk,k where Nk is the number of271
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observations for diagnostic k, and k refers to a diagnostic (i.e. k = 1 for temperature,272

and k = 2 for ocean heat content). The likelihood function for observations yk given the273

model and the statistical parameters is given by [Bence, 1995; Olson et al., 2012]:274

L(yk|Kbg,CS, Asc, σk, ρk, bk) =
(
2πσ2

p,k

)−1/2
exp

(
−1

2

n2
1,k

σ2
p,k

)
×

×
(
2πσ2

k

)−(Nk−1)/2
× exp

− 1

2σ2
k

Nk∑
t=2

w2
t,k

 .

Here σ2
p,k refers to the stationary process variance and is defined by σ2

p,k = σ2
k/(1− ρ2k),

and wt,k are whitened bias-corrected residuals. The whitened residuals are calculated as

wt,k = nt,k − ρknt−1,k for t > 1. Assuming the independence of the residuals (between the

model and the pseudo-observations) across different diagnostics, the final likelihood for

all pseudo-observations Y ≡ (yT,yOHC) is the product of the individual likelihoods:

L(Y|Θ) = L(yT|Kbg, CS,Asc, σT , ρT , bT )× L(yOHC|Kbg, CS,Asc, σOHC , ρOHC) (4)
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Table 1: Ranges for model and statistical parameters. Subscripts T and OHC refer to surface
air temperature and upper ocean heat content respectively

Parameter Units
Lower
Bound

Upper
Bound

Kbg cm2 s−1 0.1 0.5
CS ◦C per CO2 doubling 1.1 11.2
Asc unitless 0 3
σT

◦C 0.01 inf
σOHC 1× 1022 J 0.01 inf
ρT unitless 0.01 0.999

ρOHC unitless 0.01 0.999
bT

◦C -0.51 0.50
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Figure Captions

Figure 1: Statistical properties of surface atmospheric temperature anomaly (T) time series448

- AR(1) innovation standard deviation σT , and first order autocorrelation ρT : GCMs (BCCR-449

BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red450

triangle), residuals between the UVic ESCM and the observations from Brohan et al. [2006]451

(years 1850-2006, blue triangle), and detrended observations from Brohan et al. [2006] (years452

1850-2006, green triangle). For the residuals, we use the marginal mode for the base case of453

Olson et al. [2012]. For the detrended observations, we first demean the yearly observations, and454

then detrend them using a lowess fit trend. Grey contours show the process standard deviation455

σp,T (cf. Appendix). We use yearly average time series for the AR(1) inference.456

Figure 2: Statistical properties of ocean heat content anomaly in the 0-700 m layer (OHC) -457

AR(1) innovation standard deviation σOHC , and first order autocorrelation ρOHC : GCMs (BCCR-458

BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red459

triangle), residuals between the UVic ESCM and the observations from Domingues et al. [2008]460

(years 1950-2003, blue triangle), and detrended observations from Domingues et al. [2008] (years461

1950-2003, green triangle). For the residuals, we use the marginal mode for the base case of462

Olson et al. [2012]. For the detrended observations, we first demean the yearly observations,463

and then detrend them using a lowess fit trend. Grey contours show process standard deviation464

σp,OHC (cf. Appendix). We use yearly average time series for the AR(1) inference.465

Figure 3: Posterior probability distributions (pdfs) for climate sensitivity from observation466

system simulation experiments: (top left) ’Standard’, (top right) ’Nat. Var., (bottom left) ’Higher467

CS’ and (bottom right) ’Inf. Priors’. Each grey line corresponds to one realization of unresolved468

climate noise. ’True’ input climate sensitivities are shown by vertical dotted lines. The dashed469
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pdf denotes CS prior in the ’Inf. Priors’ experiment. Filled (open) red circles denote the mean470

(median) CS mode, and the red lines extend one standard deviation around the mean mode. The471

limits of the y-axes are the same between panels.472

Figure 4: Histograms of the modes of the estimated climate sensitivity probability density473

functions: (top left) ’Standard’, (top right) ’Nat. Var’, (bottom left) ’Higher CS’, and (bottom474

right) ’Inf. Priors’. ’True’ input climate sensitivities are shown by vertical red lines. Y-axes475

limits are the same between panels.476
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Figure 1: Statistical properties of surface atmospheric temperature anomaly (T) time series -
AR(1) innovation standard deviation σT , and first order autocorrelation ρT : GCMs (BCCR-
BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the observations from Brohan et al. [2006]
(years 1850-2006, blue triangle), and detrended observations from Brohan et al. [2006] (years
1850-2006, green triangle). For the residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first demean the yearly observations, and
then detrend them using a lowess fit trend. Grey contours show the process standard deviation
σp,T (cf. Appendix). We use yearly average time series for the AR(1) inference.
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Figure 2: Statistical properties of ocean heat content anomaly in the 0-700 m layer (OHC) -
AR(1) innovation standard deviation σOHC , and first order autocorrelation ρOHC : GCMs (BCCR-
BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the observations from Domingues et al. [2008]
(years 1950-2003, blue triangle), and detrended observations from Domingues et al. [2008] (years
1950-2003, green triangle). For the residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first demean the yearly observations,
and then detrend them using a lowess fit trend. Grey contours show process standard deviation
σp,OHC (cf. Appendix). We use yearly average time series for the AR(1) inference.
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Figure 3: Posterior probability distributions (pdfs) for climate sensitivity from observation system
simulation experiments: (top left) ’Standard’, (top right) ’Nat. Var., (bottom left) ’Higher CS’
and (bottom right) ’Inf. Priors’. Each grey line corresponds to one realization of unresolved
climate noise. ’True’ input climate sensitivities are shown by vertical dotted lines. The dashed
pdf denotes CS prior in the ’Inf. Priors’ experiment. Filled (open) red circles denote the mean
(median) CS mode, and the red lines extend one standard deviation around the mean mode. The
limits of the y-axes are the same between panels.
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Figure 4: Histograms of the modes of the estimated climate sensitivity probability density func-
tions: (top left) ’Standard’, (top right) ’Nat. Var’, (bottom left) ’Higher CS’, and (bottom right)
’Inf. Priors’. ’True’ input climate sensitivities are shown by vertical red lines. Y-axes limits are
the same between panels.
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