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X-2 OLSON ET AL.: EFFECT OF INTERNAL VARIABILITY

Abstract.  Current climate sensitivity (CS) estimates are highly uncer-
tain. Quantifying the sources of this uncertainty is relevant to the design of
climate policies. Here we isolate and evaluate the role of internal climate vari-
ability in driving the climate sensitivity uncertainty using observation sys-
tem simulation experiments. We use ensemble runs of the University of Vic-
toria Earth System Climate Model (UVic ESCM) spanning the last two cen-
turies. We first construct pseudo-observations of global mean temperature
and ocean heat content from the model output at a specified true’ CS, and
then re-estimate the CS using an inverse method. Our results suggest that
unresolved internal climate variability is a key driver of current CS uncer-
tainty (as measured by the 68% credible interval). We demonstrate that the
internal variability can result in a large discrepancy between the best CS es-
timate and the truth. Since current best CS estimates based on the observed
warming all rely on the same variability, they may be considerably higher

or lower than the true value. The estimation uncertainties increase at higher
climate sensitivities, suggesting that a high CS might be difficult to detect

due to the effects of observational errors and internal climate variability.
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OLSON ET AL.: EFFECT OF INTERNAL VARIABILITY X-3

1. Introduction

Future climate projections strongly depend on climate sensitivity (CS) [Matthews and
Caldeira, 2007; Knutti and Hegerl, 2008]. CS is the equilibrium global mean near-surface
temperature change for a doubling of atmospheric COy concentrations [Andronova et al.,
2007; Knutti and Hegerl, 2008]. Many recent studies attempted to estimate climate sensi-
tivity [Forest et al., 2002, 2006; Knutti et al., 2003; Tomassini et al., 2007; Drignei et al.,
2008; Holden et al., 2010; Olson et al., 2012; Urban and Keller, 2010, and others], yet this
quantity remains highly uncertain [Hegerl et al., 2007; Edwards et al., 2007].

Several sources contribute to this uncetainty. They include (i) climate model error, (ii)
unresolved internal climate variability, and (iii) observational error. We refer to the sum
of these processes as 'unresolved climate noise’. Quantifying the relative contribution of
these sources of uncertainty is of considerable policy relevance. Here we focus on the role
of the unresolved internal climate variability. The unresolved internal climate variability
is the part of the observed internal climate variability record that a climate model can
not reproduce.

We use observation system simulation experiments (OSSEs) to analyze the role of inter-
nal climate variability. OSSEs are a common tool in physical and environmental sciences
to evaluate observation system designs [e.g., Huang et al., 2010a, b; Serra et al., 2011; Za-
kamska et al., 2011; Urban and Keller, 2009]. In OSSEs, synthetic observations ('pseudo-
observations’) are first generated from a model with known ’true’ parameter setting by
adding noise representing observational error. Then the parameters are re-estimated using

the pseudo-observations.
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X-4 OLSON ET AL.: EFFECT OF INTERNAL VARIABILITY

Our starting point is an ensemble of Earth System Model runs spanning the last two
centuries where climate sensitivity is systematically varied. The ensemble also accounts
for the uncertainty in ocean mixing and radiative effects of anthropogenic sulfates [Olson
et al., 2012]. We develop a statistical approximator (‘emulator’) of our climate model
and use it to estimate model output at the parameter values where the model was not
evaluated. In a suite of OSSEs, we construct pseudo-observations of surface temperature
(T) and upper ocean heat content (0-700 m, OHC) by contaminating the model output
at a set true’ CS with unresolved climate noise. We then re-estimate CS using the
pseudo-observations, and an inverse parameter estimation method. We use this approach
to address three main questions: (i) How well can we constrain CS using observations of
temperature and upper ocean heat content? (ii) Do the estimation uncertainties depend
on the input CS? and (iii) What is the contribution of the unresolved internal climate
variability to the CS uncertainty? We give further details on the Earth System model, the

parameter estimation methodology, and the experimental design in the following sections.

2. Methods

2.1. Earth System Model Simulations

We use the University of Victoria Earth System model (UViec ESCM) version 2.8
[Weaver et al., 2001]. Our modified version of the model includes an updated solar ra-
diative forcing, and implements additional greenhouse gas, volcanic, and anthropogenic
sulfate aerosol forcings [Olson et al., 2012]. We use an ensemble of 250 historical UVic
ESCM runs spanning the years 1800-2010. The ensemble samples model parameters CS

(through an additional parameter f*), background vertical ocean diffusivity (/,) and a
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OLSON ET AL.: EFFECT OF INTERNAL VARIABILITY X-5

scaling factor for albedoes due anthropogenic sulfate aerosols (Ag.) [Olson et al., 2012].

The ranges for the climate model parameters are given in Table 1.

2.2. Gaussian Process Emulator

Our methodology to estimate the probability density function for CS given the pseudo-
observations requires orders of magnitude more UVic ESCM runs than computationally
feasible to carry out with a typical computational environment (see Section 2.3). We
overcome this hurdle by using the UVic ESCM emulator described in Olson et al. [2012].
Emulators are fast statistical approximators to climate models, and are often used in
climate science [Drignei et al., 2008; Holden et al., 2010; Edwards et al., 2011; Bhat et al.,
2012; Olson et al., 2012]. Because of their speed, they help to better sample model
parameter space. Our emulator relies on model output at the 250 parameter settings
of the ensemble and interpolates the model response to any desired parameter setting.
Specifically, the emulator estimates global average annual surface temperature anomalies
T (years 1850-2006) and upper ocean heat content anomalies OHC (0-700 m, years 1950~
2003). These times reflect the coverage of pseudo-observations (Section 2.3) and are
consistent with the span of observations from Brohan et al. [2006] and Domingues et al.
[2008]. The temperature anomaly is with respect to years 1850-1899, while the OHC
anomaly - to years 1950-2003.

The emulator works in rescaled model parameter coordinates such that each parameter
ranges from zero to unity. The emulator models the climate model output as a sum of
a quadratic polynomial in the rescaled parameters, and a zero-mean Gaussian process
with an isotropic covariance function (i.e., the smoothness of the Gaussian Process is the

same in all rescaled climate model parameter directions). We use the emulator to only
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X-6 OLSON ET AL.: EFFECT OF INTERNAL VARIABILITY

interpolate the model outputs between the parameter settings. There is no extrapolation
beyond the range of the ensemble. The emulator provides a reasonable approximation to

UVic ESCM over the parameter ranges used [Olson et al., 2012].

2.3. Observation System Simulation Experiments

We conduct several OSSE to address three questions. First, how well can pseudo-
observations of temperature and upper ocean heat content constrain climate sensitivity
(in terms of the width of CS probability density function (pdf), and the scatter of the
estimated CS mode for repeated experiments)? Second, does the estimation skill depend
on the input CS? Finally, how important is the unresolved internal climate variability for
the CS uncertainty (as measured by the width and the scatter of the CS pdfs)?

The OSSEs involve two main parts: (i) Generation of pseudo-observations from the
UVic ESCM given assumed ’true’ CS and (ii) Re-estimating CS given the UVic ESCM
model output, the pseudo-observations, and the inverse parameter estimation method.
In the first stage, we answer the following question: Given a ’true’ CS, and assuming
that the UVic ESCM emulator correctly models climate response to historical forcings,
what time series of temperature and ocean heat content can we theoretically observe? To
this end, we construct pseudo-observations by superimposing unresolved climate noise on
the UVic ESCM emulator output at a pre-defined ’true’ climate parameter setting. The
unresolved noise models the sum of the processes that result in the discrepancy between

the observations and the emulator. Mathematically, the noise n is defined as:

Nk = Ytk — ]Ft,k(e)7 (1)
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where y refer to the observations, f is the emulator output, 6 is the vector of model
parameters (K, CS, Asc), t is the time index, and k is the diagnostic index (i.e. k =1
for T, and k = 2 for OHC).

We approximate the unresolved climate noise by an AR(1) process. Exploratory data
analysis shows that this is a reasonable assumptions for all OSSEs presented here. Specif-

ically,

Nyl = PN—1k + Wk, (2)

where p is first-order autocorrelation and w is an independently and identically distributed
Gaussian noise with the innovation standard deviation ;. This AR(1) process is com-
pletely specified the by o, and py parameters.

The second stage of the OSSE addresses that question of what CS pdfs we expect for a
given 'true’ CS value and different realizations of the unresolved climate noise? Following

Olson et al. [2012], we re-estimate CS using the following statistical model:

Yik = frn + Ok + Mg (3)

where by, is an additional time-independent bias. To be consistent with Olson et al. [2012]
we set the bias term for OHC to 0 in this stage. Associated with each parameter value ©
= (Kyy, CS, Ay, o1, 00nC, Pr, Porc, br) there is a likelihood function which describes
the probability of observations given this parameter value (please see the Appendix).
The posterior probability for each parameter setting is obtained using Bayes Theorem

by multiplying the likelihood function by the prior probability for the parameters. We
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estimate the joint posterior pdf for ® using Markov chain Monte Carlo (MCMC). The
MCMC algorithm [Metropolis et al., 1953; Hastings, 1970] is a standard computational
approach for estimating multivariate posterior pdfs. Our implementation of the method
follows Olson et al. [2012]. Specifically, our MCMC parameter chains are 300,000 members
long for each unresolved noise realization. The actual number of required emulator runs
is higher because only a subset of tested parameter settings are accepted into the chain.
For each experiment, we repeat the procedure of generating pseudo-observations and
estimating CS sixty times, each time relying on a different random realization of the
unresolved climate noise process. Two out of sixty realizations are tested for convergence
by running the estimation twice with different initial values for the final MCMC chain.
We have not detected any convergence problems with our algorithm.

The OSSEs share the same general set-up, with relatively minor differences. Specifi-
cally, the experiments differ in assumed ’true’ parameter values, in the priors, and in the
assumptions about the unresolved noise process (Table 2).

In the first experiment, called "Standard’, we address the power of the observations to
constrain CS assuming realistic knowledge of climate uncertainties. Here we use mean
estimates from the base case of Olson et al. [2012] as ’true’ climate parameters. These
values are K, = 0.19 cm?s7!, CS = 3.1 °C and A,. = 1.1. For unresolved climate noise
we adopt the modes from the base case of Olson et al. [2012]: o = 0.10 [°C], oouc = 2.6
[x10%2 J], pr = 0.58, and porc = 0.079 ("UVic ESCM Residuals’ in Figures 1 and 2).
For simplicity, we do not use bias terms when generating pseudo-observations, since the
95% posterior credible intervals for these terms include zero [Olson et al., 2012]. We use

uniform priors for all parameters.
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In the experiment 'Nat. Var.”, we address the following question: What could the
estimated pdfs look like if the only source of the discrepancy between the model and the
observations were the unresolved internal climate variability? By the internal climate
variability we mean the variations in the mean state of the climate on all spatial and
temporal scales beyond that of individual weather events due to natural internal processes
within the climate system (as opposed to variations in natural or anthropogenic external
forcing) [Baede, 2007]. The only difference between 'Nat. Var.” and 'Standard’ lies in the
values for the unresolved noise parameters. In the 'Nat. Var.” experiment we assume that
the unresolved noise models the internal climate variability only. We also assume that
the UVic ESCM emulator does not include any substantial internal climate variability.

Unfortunately, estimating the internal climate variability from observations is con-
founded by the observational errors, particularly in the case of OHC. Thus, following
Tomassini et al. [2007] and Sanso and Forest [2009] we approximate the internal vari-
ability by using the output from General Circulation Models (GCMs). We fit an AR(1)
process to detrended near-surface annual atmospheric temperature and 0-700 m ocean
heat content anomalies from preindustrial control runs of three climate models: BCCR-
BCM2.0 [Ottera et al., 2009], GFDL-CM2.1 [Delworth et al., 2006; Gnanadesikan et al.,
2006] and UKMO-HadCM3 [Gordon et al., 2000; Pope et al., 2000; Johns et al., 2003].
The output of these runs was obtained from the World Climate Research Programme’s
(WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset
[Meehl et al., 2007]. Specifically, we use run 1 for all three models. We discard the first 100
years for BCCR-BCM2.0 because the modeled climate appears to be out of equilibrium

during this period. We detrend the anomalies using robust locally weighted regression
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X-10 OLSON ET AL.: EFFECT OF INTERNAL VARIABILITY

[Cleveland, 1979] with the span f of 2/3. When calculating OHC, we first obtain temper-
atures from potential temperatures, and salinities using the UNESCO equation of state
[UNESCO, 1981] following Bryden [1973] and Fofonoff [1977]. For this conversion we
find the ocean pressure field from latitude and depth using simplified equations [Lovett,
1978]. The resulting AR(1) properties, averaged across the models, are: or=0.12 [°C],
oogc = 0.51 [x10%2 J], pr = 0.45, and poxc = 0.9 (Table 2, Figures 1 and 2, red
triangles).

The "Higher CS’ experiment explores the effects of different true’ parameter values on
the estimation. It differs from ’Standard’ by using a higher 'true’ input CS. Specifically,
we adopt Kjy = 0.19 cm?s7!, CS = 4.8 °C and A,, = 1.3. These values are selected to be
consistent with the bivariate joint pdfs presented in Olson et al. [2012].

The 'Inf. Priors’ experiment examines the role of priors. It uses informative priors for
CS (Figure 3) and K, following the default case of Olson et al. [2012]. "Inf. Priors’ has

otherwise the same settings as 'Standard’ (cf. Table 2).

3. Results and Discussion

Our results suggest that the process driving unresolved internal climate variability is
a key factor behind the current uncertainty in climate sensitivity estimates. Specifically,
the average width of the estimated CS pdfs (as measured by the 68% posterior credible
intervals) in the 'Nat. Var.” case is only modestly lower compared to the 'Standard’ case
(Table 2, Figure 3). This indicates that even if we had perfect models of long term mean
climate, and errorless observations, our CS estimates would still remain very uncertain due
to the confounding effect of the unresolved internal climate variability. The variability also

appears to be a key factor in the second-order uncertainty in climate sensitivity (Figures
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3 and 4). This uncertainty represents the sensitivity of estimated CS pdfs to different
realizations of the unresolved climate noise, and is measured by the standard deviation
of CS modes between the realizations. Specifically, while the standard deviation is 1.6 °C
in the ’Standard’ case, it decreases only slightly to 1.4 °C in the 'Nat. Var.” case (Table
2). Of course, the pivotal role of the internal climate variability should not prevent us
from investing in better future observational systems. Webster et al. [2008] find, using a
simplified unresolved climate noise representation, that future observations are expected
to further reduce the CS uncertainty. Our results suggest that internal climate variability
presents a substantial obstacle to estimating climate sensitivity. Whether alternative
approaches that perform joint state and parameter estimation [e.g., Annan et al., 2005;
Hill et al., 2012; Evensen, 2009] can overcome this challenge, is thus far an open question.

The CS estimation uncertainties increase at higher CS. Specifically, both pdf width and
scatter increase considerably compared to the ’Standard’ case (Table 2, Figure 4). This
suggests that higher climate sensitivities can be difficult to detect if a particular realization
of climate noise biases the result low. This is consistent with the analytical model results
of Hansen et al. [1985] which show that the dependency of transient ocean warming on
climate sensitivity weakens at high CS. Thus, at high CS, a small uncertainty in a single
ocean surface warming observation implies a larger uncertainty in climate sensitivity. Our
numerical model shows similar response of atmospheric surface warming to changing CS.
Note that there are other complicating factors influencing the CS uncertainty, such as the
aerosol effects specified by A,..

Switching from uniform to informative priors (the 'Inf. Priors’ experiment) substantially

reduces the CS uncertainty (Table 2, Figures 3 and 4). Under the informative priors, the
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mean estimated CS mode (2.9 °C) is somewhat lower than the true’ value of 3.1 °C. This
difference is statistically significant (o = 0.05). This might be in part due to the biasing
effect of the mode of the CS prior, which is lower than the ’true’ value. Both of these
effects (lower uncertainty but potential biases under narrower priors within the context of
OSSEs) have been previously found and discussed by Webster et al. [2008]. Thus, while
using informative priors can be a promising approach, care should be given to choosing
an appropriate prior.

Finally, each realization of internal climate variability can result in a considerable dis-
crepancy between the best CS estimate and the true value ('Nat. Var.” panels, Figures
3 and 4). The average discrepancy due to the unresolved internal variability is 1.1 °C
(Table 2). One of the Nat. Var. experiments leads to an estimate of 7.5 °C which is 4.4
°C higher than the 'true’ value. The distribution of the discrepancy is positively skewed,
with a longer upper tail (Figure 4). Historical observational constraints on climate sen-
sitivity (e.g., upper ocean heat content, and surface temperature) are based on a single
realization of internal climate variability process. Assuming that the biasing effects of
the observational and model errors are low, this realization can introduce a considerable
discrepancy between the best CS estimate and the true value. Given that scientific models
often share similar assumptions and might not be independent (see Pennell and Reichler
[2011] for a discussion of similarities in GCMSs), it is possible that the bias due to the
internal variability can be in the same direction in studies using different models. As a
result, current best CS estimates from these datasets may be considerably higher or lower

than the true value. One of the ways to overcome this under-sampling problem is to use
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independent constraints from other time periods (e.g., Last Glacial Maximum, Schmittner

et al. [2011]).

4. Caveats

Our analysis uses many simplifying assumptions that point to several caveats and open
research questions. First, our Earth System model relies on a number of approximations
and neglects some historic forcings (e.g., indirect effects of anthropogenic sulfates; and
tropospheric ozone [Forster et al., 2007]). Second, we do not fully account for past forc-
ing uncertainties. Third, we change climate sensitivity using a very simplistic approach
by varying longwave radiative feedbacks, while shortwave feedbacks are also uncertain
[Bony et al., 2006]. Fourth, our statistical model does not include any cross-correlation
among the residuals for T and OHC, and relies on a simple AR(1) structure. However,
our exploratory data analysis suggests that this structure is a reasonable approximation
to the underlying statistical processes. Fifth, we use a relatively small number of realiza-
tions in the OSSEs to keep the computational burden manageable. Sixths, our estimates
of internal climate variability rely on three climate models. Using more models might
provide a better sample. Seventh, there is a distinct possibility that climate models con-
siderably underestimate the observed decadal OHC variability (e.g., Levitus et al. [2001],
Hansen et al. [2005]; but see AchutaRao et al. [2007] for an alternative view). If true,
we hypothesize that the CS uncertainty in the 'Nat. Var.” experiment would increase,
which would strengthen our conclusion that natural variability is an important driver of
the uncertainty in climate sensitivity. Last, but not least, we rely on uniform priors in
most experiments. We have chosen to work with the relatively simple prior specification

because it still remains an open question to find more informative priors that lead to good
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bias, and coverage properties. Finally, we explore only a small subset of uncertainty in

unresolved climate noise and in climate model parameters.

5. Conclusions

We use Observation System Simulation Experiments (OSSEs) to analyze the effects
of unresolved internal climate variability on the uncertainty in climate sensitivity. We
repeatedly simulate pseudo-observations from an Earth System Model with a given climate
sensitivity, and then re-estimate the sensitivity using a Bayesian inversion method.

We find that unresolved internal climate variability is a key driver of the first-order (as
measured by the 68% posterior credible internal) and the second-order (as measured by
standard deviation of the estimated modes) uncertainty in climate sensitivity estimates.
A single realization of the statistical process driving the variability can introduce a sub-
stantial discrepancy between a CS estimate and the true value. Since recent CS estimates
using instrumental temperature and upper ocean heat content observations all rely on
the same realization, they may be considerably higher or lower than the true CS. The
unresolved internal variability represents a critical roadblock: our research suggests that
even if we at present had errorless models and observations, current estimation approaches
would still result in considerable CS uncertainty. Exploring the power of combined state
and parameter estimation [e.g., Annan et al., 2005; Hill et al., 2012; Evensen, 2009] to

confront this challenge is the subject of future research.

Appendix
This appendix provides the likelihood function for observations if the statistical model

is given by Equations 2 and 3. We define yx = y1x, ..., yn, » Where Ny is the number of
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observations for diagnostic k, and k refers to a diagnostic (i.e. k = 1 for temperature,
and k = 2 for ocean heat content). The likelihood function for observations yy given the

model and the statistical parameters is given by [Bence, 1995; Olson et al., 2012]:

5 \—1/2 1 nfk
L(Yk|Kbga CS) ASC7 Ok Pk bk) = (27T0-p,k) eXp _5 o2 X
—(Nj—1)/2 1 M
X (2#0,3) =0/ X exp (—2 wfk) .

Here o7 refers to the stationary process variance and is defined by o2, = o/(1 — p}),
and wyj are whitened bias-corrected residuals. The whitened residuals are calculated as
Wi = Ne g — PeNe—1x for t > 1. Assuming the independence of the residuals (between the
model and the pseudo-observations) across different diagnostics, the final likelihood for

all pseudo-observations Y = (yr,yonc) is the product of the individual likelihoods:

L(Y|®) = L(yr|Kpg, CS, Asc, o7, pr, br) X L(youc| Ky, CS, Ase, conc, ponc) (4)
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Table 1: Ranges for model and statistical parameters. Subscripts T and OHC' refer to surface

air temperature and upper ocean heat content respectively

DRAFT

. Lower | Upper
Parameter Units Bound | Bound
Ky, cm? 57! 0.1 0.5
CS °C per CO4 doubling 1.1 11.2
A, unitless 0 3
o °C 0.01 inf
OOHC 1x10%2] 0.01 inf
oT unitless 0.01 | 0.999
POHC unitless 0.01 | 0.999
by °C -0.51 | 0.50
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Figure Captions

Figure 1: Statistical properties of surface atmospheric temperature anomaly (T) time series
- AR(1) innovation standard deviation or, and first order autocorrelation pr: GCMs (BCCR-
BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the observations from Brohan et al. [2006]
(years 1850-2006, blue triangle), and detrended observations from Brohan et al. [2006] (years
1850-2006, green triangle). For the residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first demean the yearly observations, and
then detrend them using a lowess fit trend. Grey contours show the process standard deviation
opr (cf. Appendix). We use yearly average time series for the AR(1) inference.

Figure 2: Statistical properties of ocean heat content anomaly in the 0-700 m layer (OHC) -
AR(1) innovation standard deviation ooy, and first order autocorrelation pogc: GCMs (BCCR-
BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the observations from Domingues et al. [2008]
(years 1950-2003, blue triangle), and detrended observations from Domingues et al. [2008] (years
1950-2003, green triangle). For the residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first demean the yearly observations,
and then detrend them using a lowess fit trend. Grey contours show process standard deviation
opomc (cf. Appendix). We use yearly average time series for the AR(1) inference.

Figure 3: Posterior probability distributions (pdfs) for climate sensitivity from observation
system simulation experiments: (top left) 'Standard’, (top right) 'Nat. Var., (bottom left) "Higher
CS’ and (bottom right) 'Inf. Priors’. Each grey line corresponds to one realization of unresolved

climate noise. "True’ input climate sensitivities are shown by vertical dotted lines. The dashed
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pdf denotes CS prior in the 'Inf. Priors’ experiment. Filled (open) red circles denote the mean
(median) CS mode, and the red lines extend one standard deviation around the mean mode. The
limits of the y-axes are the same between panels.

Figure 4: Histograms of the modes of the estimated climate sensitivity probability density
functions: (top left) 'Standard’, (top right) 'Nat. Var’, (bottom left) "Higher CS’, and (bottom
right) ’Inf. Priors’. "True’ input climate sensitivities are shown by vertical red lines. Y-axes

limits are the same between panels.
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Figure 1: Statistical properties of surface atmospheric temperature anomaly (T) time series -
AR(1) innovation standard deviation o, and first order autocorrelation py: GCMs (BCCR-
BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the observations from Brohan et al. [2006]
(years 1850-2006, blue triangle), and detrended observations from Brohan et al. [2006] (years
1850-2006, green triangle). For the residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first demean the yearly observations, and
then detrend them using a lowess fit trend. Grey contours show the process standard deviation
opr (cf. Appendix). We use yearly average time series for the AR(1) inference.
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Figure 2: Statistical properties of ocean heat content anomaly in the 0-700 m layer (OHC) -
AR(1) innovation standard deviation oo ¢, and first order autocorrelation pogco: GCMs (BCCR-
BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
triangle), residuals between the UVic ESCM and the observations from Domingues et al. [2008]
(years 1950-2003, blue triangle), and detrended observations from Domingues et al. [2008] (years
1950-2003, green triangle). For the residuals, we use the marginal mode for the base case of
Olson et al. [2012]. For the detrended observations, we first demean the yearly observations,
and then detrend them using a lowess fit trend. Grey contours show process standard deviation
opomc (cf. Appendix). We use yearly average time series for the AR(1) inference.
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Figure 3: Posterior probability distributions (pdfs) for climate sensitivity from observation system
simulation experiments: (top left) 'Standard’, (top right) 'Nat. Var., (bottom left) "Higher CS’
and (bottom right) ’Inf. Priors’. Each grey line corresponds to one realization of unresolved
climate noise. "True’ input climate sensitivities are shown by vertical dotted lines. The dashed
pdf denotes CS prior in the ’Inf. Priors’ experiment. Filled (open) red circles denote the mean
(median) CS mode, and the red lines extend one standard deviation around the mean mode. The
limits of the y-axes are the same between panels.
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Figure 4: Histograms of the modes of the estimated climate sensitivity probability density func-
tions: (top left) 'Standard’, (top right) 'Nat. Var’, (bottom left) 'Higher CS’, and (bottom right)
Inf. Priors’. "True’ input climate sensitivities are shown by vertical red lines. Y-axes limits are

the same between panels.
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