

¹ **What is the effect of unresolved internal climate variability on climate sensitivity estimates?**

R. Olson^{*,1}, R. Srivastava², M. Haran³, W. Chang³, N. M. Urban⁴, and K.

Keller^{1,5}

³ ¹ Department of Geosciences, Penn State University, University Park, PA, USA.

⁴ ² Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.

⁶ ³ Department of Statistics, Penn State University, University Park, PA, USA.

⁷ ⁴ Energy Security Center, Los Alamos National Laboratory, Los Alamos, NM, USA.

⁸ ⁵ Earth and Environmental Systems Institute, Penn State University, University Park, PA, USA.

*Corresponding author email: rzt2-wrk@psu.edu

10 Abstract. Current climate sensitivity (CS) estimates are highly uncertain.
11 Quantifying the sources of this uncertainty is relevant to the design of
12 climate policies. Here we isolate and evaluate the role of internal climate variability
13 in driving the climate sensitivity uncertainty using observation system simulation
14 experiments. We use ensemble runs of the University of Victoria Earth System Climate Model
15 (UVic ESCM) spanning the last two centuries. We first construct pseudo-observations of global mean temperature
16 and ocean heat content from the model output at a specified 'true' CS, and
17 then re-estimate the CS using an inverse method. Our results suggest that
18 unresolved internal climate variability is a key driver of current CS uncertainty
19 (as measured by the 68% credible interval). We demonstrate that the
20 internal variability can result in a large discrepancy between the best CS estimate
21 and the truth. Since current best CS estimates based on the observed
22 warming all rely on the same variability, they may be considerably higher
23 or lower than the true value. The estimation uncertainties increase at higher
24 climate sensitivities, suggesting that a high CS might be difficult to detect
25 due to the effects of observational errors and internal climate variability.

1. Introduction

27 Future climate projections strongly depend on climate sensitivity (CS) [Matthews and
28 Caldeira, 2007; Knutti and Hegerl, 2008]. CS is the equilibrium global mean near-surface
29 temperature change for a doubling of atmospheric CO₂ concentrations [Andronova *et al.*,
30 2007; Knutti and Hegerl, 2008]. Many recent studies attempted to estimate climate sensi-
31 tivity [Forest *et al.*, 2002, 2006; Knutti *et al.*, 2003; Tomassini *et al.*, 2007; Drignei *et al.*,
32 2008; Holden *et al.*, 2010; Olson *et al.*, 2012; Urban and Keller, 2010, and others], yet this
33 quantity remains highly uncertain [Hegerl *et al.*, 2007; Edwards *et al.*, 2007].

34 Several sources contribute to this uncertainty. They include (i) climate model error, (ii)
35 unresolved internal climate variability, and (iii) observational error. We refer to the sum
36 of these processes as 'unresolved climate noise'. Quantifying the relative contribution of
37 these sources of uncertainty is of considerable policy relevance. Here we focus on the role
38 of the unresolved internal climate variability. The unresolved internal climate variability
39 is the part of the observed internal climate variability record that a climate model can
40 not reproduce.

41 We use observation system simulation experiments (OSSEs) to analyze the role of inter-
42 nal climate variability. OSSEs are a common tool in physical and environmental sciences
43 to evaluate observation system designs [*e.g.*, Huang *et al.*, 2010a, b; Serra *et al.*, 2011; Za-
44 kamska *et al.*, 2011; Urban and Keller, 2009]. In OSSEs, synthetic observations ('pseudo-
45 observations') are first generated from a model with known 'true' parameter setting by
46 adding noise representing observational error. Then the parameters are re-estimated using
47 the pseudo-observations.

48 Our starting point is an ensemble of Earth System Model runs spanning the last two
49 centuries where climate sensitivity is systematically varied. The ensemble also accounts
50 for the uncertainty in ocean mixing and radiative effects of anthropogenic sulfates [Olson
51 *et al.*, 2012]. We develop a statistical approximator ('emulator') of our climate model
52 and use it to estimate model output at the parameter values where the model was not
53 evaluated. In a suite of OSSEs, we construct pseudo-observations of surface temperature
54 (T) and upper ocean heat content (0-700 m, OHC) by contaminating the model output
55 at a set 'true' CS with unresolved climate noise. We then re-estimate CS using the
56 pseudo-observations, and an inverse parameter estimation method. We use this approach
57 to address three main questions: (i) How well can we constrain CS using observations of
58 temperature and upper ocean heat content? (ii) Do the estimation uncertainties depend
59 on the input CS? and (iii) What is the contribution of the unresolved internal climate
60 variability to the CS uncertainty? We give further details on the Earth System model, the
61 parameter estimation methodology, and the experimental design in the following sections.

2. Methods

2.1. Earth System Model Simulations

62 We use the University of Victoria Earth System model (UVic ESCM) version 2.8
63 [Weaver *et al.*, 2001]. Our modified version of the model includes an updated solar ra-
64 diative forcing, and implements additional greenhouse gas, volcanic, and anthropogenic
65 sulfate aerosol forcings [Olson *et al.*, 2012]. We use an ensemble of 250 historical UVic
66 ESCM runs spanning the years 1800-2010. The ensemble samples model parameters CS
67 (through an additional parameter f^*), background vertical ocean diffusivity (K_{bg}) and a

68 scaling factor for albedoes due anthropogenic sulfate aerosols (A_{sc}) [Olson *et al.*, 2012].

69 The ranges for the climate model parameters are given in Table 1.

2.2. Gaussian Process Emulator

70 Our methodology to estimate the probability density function for CS given the pseudo-
71 observations requires orders of magnitude more UVic ESCM runs than computationally
72 feasible to carry out with a typical computational environment (see Section 2.3). We
73 overcome this hurdle by using the UVic ESCM emulator described in Olson *et al.* [2012].

74 Emulators are fast statistical approximators to climate models, and are often used in
75 climate science [Drignei *et al.*, 2008; Holden *et al.*, 2010; Edwards *et al.*, 2011; Bhat *et al.*,
76 2012; Olson *et al.*, 2012]. Because of their speed, they help to better sample model
77 parameter space. Our emulator relies on model output at the 250 parameter settings
78 of the ensemble and interpolates the model response to any desired parameter setting.
79 Specifically, the emulator estimates global average annual surface temperature anomalies
80 T (years 1850-2006) and upper ocean heat content anomalies OHC (0-700 m, years 1950-
81 2003). These times reflect the coverage of pseudo-observations (Section 2.3) and are
82 consistent with the span of observations from Brohan *et al.* [2006] and Domingues *et al.*
83 [2008]. The temperature anomaly is with respect to years 1850-1899, while the OHC
84 anomaly - to years 1950-2003.

85 The emulator works in rescaled model parameter coordinates such that each parameter
86 ranges from zero to unity. The emulator models the climate model output as a sum of
87 a quadratic polynomial in the rescaled parameters, and a zero-mean Gaussian process
88 with an isotropic covariance function (*i.e.*, the smoothness of the Gaussian Process is the
89 same in all rescaled climate model parameter directions). We use the emulator to only

90 interpolate the model outputs between the parameter settings. There is no extrapolation
 91 beyond the range of the ensemble. The emulator provides a reasonable approximation to
 92 UVic ESCM over the parameter ranges used [*Olson et al.*, 2012].

2.3. Observation System Simulation Experiments

93 We conduct several OSSE to address three questions. First, how well can pseudo-
 94 observations of temperature and upper ocean heat content constrain climate sensitivity
 95 (in terms of the width of CS probability density function (pdf), and the scatter of the
 96 estimated CS mode for repeated experiments)? Second, does the estimation skill depend
 97 on the input CS? Finally, how important is the unresolved internal climate variability for
 98 the CS uncertainty (as measured by the width and the scatter of the CS pdfs)?

The OSSEs involve two main parts: (i) Generation of pseudo-observations from the UVic ESCM given assumed 'true' CS and (ii) Re-estimating CS given the UVic ESCM model output, the pseudo-observations, and the inverse parameter estimation method. In the first stage, we answer the following question: Given a 'true' CS, and assuming that the UVic ESCM emulator correctly models climate response to historical forcings, what time series of temperature and ocean heat content can we theoretically observe? To this end, we construct pseudo-observations by superimposing unresolved climate noise on the UVic ESCM emulator output at a pre-defined 'true' climate parameter setting. The unresolved noise models the sum of the processes that result in the discrepancy between the observations and the emulator. Mathematically, the noise n is defined as:

$$n_{t,k} = y_{t,k} - \tilde{f}_{t,k}(\theta), \quad (1)$$

99 where y refer to the observations, \tilde{f} is the emulator output, θ is the vector of model
 100 parameters (K_{bg} , CS, A_{sc}), t is the time index, and k is the diagnostic index (*i.e.* $k = 1$
 101 for T, and $k = 2$ for OHC).

102 We approximate the unresolved climate noise by an AR(1) process. Exploratory data
 103 analysis shows that this is a reasonable assumptions for all OSSEs presented here. Specif-
 104 ically,

$$n_{t,k} = \rho n_{t-1,k} + w_{t,k}, \quad (2)$$

105 where ρ is first-order autocorrelation and w is an independently and identically distributed
 106 Gaussian noise with the innovation standard deviation σ_k . This AR(1) process is com-
 107 pletely specified the by σ_k and ρ_k parameters.

108 The second stage of the OSSE addresses that question of what CS pdfs we expect for a
 109 given 'true' CS value and different realizations of the unresolved climate noise? Following
 110 *Olson et al.* [2012], we re-estimate CS using the following statistical model:

$$y_{t,k} = \tilde{f}_{t,k} + b_k + n_{t,k}, \quad (3)$$

111 where b_k is an additional time-independent bias. To be consistent with *Olson et al.* [2012]
 112 we set the bias term for OHC to 0 in this stage. Associated with each parameter value Θ
 113 $= (K_{bg}, \text{CS}, A_{sc}, \sigma_T, \sigma_{OHC}, \rho_T, \rho_{OHC}, b_T)$ there is a likelihood function which describes
 114 the probability of observations given this parameter value (please see the Appendix).
 115 The posterior probability for each parameter setting is obtained using Bayes Theorem
 116 by multiplying the likelihood function by the prior probability for the parameters. We

estimate the joint posterior pdf for Θ using Markov chain Monte Carlo (MCMC). The MCMC algorithm [*Metropolis et al.*, 1953; *Hastings*, 1970] is a standard computational approach for estimating multivariate posterior pdfs. Our implementation of the method follows *Olson et al.* [2012]. Specifically, our MCMC parameter chains are 300,000 members long for each unresolved noise realization. The actual number of required emulator runs is higher because only a subset of tested parameter settings are accepted into the chain. For each experiment, we repeat the procedure of generating pseudo-observations and estimating CS sixty times, each time relying on a different random realization of the unresolved climate noise process. Two out of sixty realizations are tested for convergence by running the estimation twice with different initial values for the final MCMC chain. We have not detected any convergence problems with our algorithm.

The OSSEs share the same general set-up, with relatively minor differences. Specifically, the experiments differ in assumed 'true' parameter values, in the priors, and in the assumptions about the unresolved noise process (Table 2).

In the first experiment, called 'Standard', we address the power of the observations to constrain CS assuming realistic knowledge of climate uncertainties. Here we use mean estimates from the base case of *Olson et al.* [2012] as 'true' climate parameters. These values are $K_{bg} = 0.19 \text{ cm}^2\text{s}^{-1}$, CS = $3.1 \text{ }^{\circ}\text{C}$ and $A_{sc} = 1.1$. For unresolved climate noise we adopt the modes from the base case of *Olson et al.* [2012]: $\sigma_T = 0.10 \text{ }^{\circ}\text{C}$, $\sigma_{OHC} = 2.6 \times 10^{22} \text{ J}$, $\rho_T = 0.58$, and $\rho_{OHC} = 0.079$ ('UVic ESCM Residuals' in Figures 1 and 2). For simplicity, we do not use bias terms when generating pseudo-observations, since the 95% posterior credible intervals for these terms include zero [*Olson et al.*, 2012]. We use uniform priors for all parameters.

140 In the experiment 'Nat. Var.', we address the following question: What could the
141 estimated pdfs look like if the only source of the discrepancy between the model and the
142 observations were the unresolved internal climate variability? By the internal climate
143 variability we mean the variations in the mean state of the climate on all spatial and
144 temporal scales beyond that of individual weather events due to natural internal processes
145 within the climate system (as opposed to variations in natural or anthropogenic external
146 forcing) [Baede, 2007]. The only difference between 'Nat. Var.' and 'Standard' lies in the
147 values for the unresolved noise parameters. In the 'Nat. Var.' experiment we assume that
148 the unresolved noise models the internal climate variability only. We also assume that
149 the UVic ESCM emulator does not include any substantial internal climate variability.

150 Unfortunately, estimating the internal climate variability from observations is con-
151 founded by the observational errors, particularly in the case of OHC. Thus, following
152 *Tomassini et al.* [2007] and *Sanso and Forest* [2009] we approximate the internal vari-
153 ability by using the output from General Circulation Models (GCMs). We fit an AR(1)
154 process to detrended near-surface annual atmospheric temperature and 0-700 m ocean
155 heat content anomalies from preindustrial control runs of three climate models: BCCR-
156 BCM2.0 [*Otterer et al.*, 2009], GFDL-CM2.1 [*Delworth et al.*, 2006; *Gnanadesikan et al.*,
157 2006] and UKMO-HadCM3 [*Gordon et al.*, 2000; *Pope et al.*, 2000; *Johns et al.*, 2003].
158 The output of these runs was obtained from the World Climate Research Programme's
159 (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset
160 [*Meehl et al.*, 2007]. Specifically, we use run 1 for all three models. We discard the first 100
161 years for BCCR-BCM2.0 because the modeled climate appears to be out of equilibrium
162 during this period. We detrend the anomalies using robust locally weighted regression

¹⁶³ [Cleveland, 1979] with the span f of 2/3. When calculating OHC, we first obtain temper-
¹⁶⁴ atures from potential temperatures, and salinities using the UNESCO equation of state
¹⁶⁵ [UNESCO, 1981] following Bryden [1973] and Fofonoff [1977]. For this conversion we
¹⁶⁶ find the ocean pressure field from latitude and depth using simplified equations [Lovett,
¹⁶⁷ 1978]. The resulting AR(1) properties, averaged across the models, are: $\sigma_T = 0.12$ [°C],
¹⁶⁸ $\sigma_{OHC} = 0.51$ [$\times 10^{22}$ J], $\rho_T = 0.45$, and $\rho_{OHC} = 0.9$ (Table 2, Figures 1 and 2, red
¹⁶⁹ triangles).

¹⁷⁰ The 'Higher CS' experiment explores the effects of different 'true' parameter values on
¹⁷¹ the estimation. It differs from 'Standard' by using a higher 'true' input CS. Specifically,
¹⁷² we adopt $K_{bg} = 0.19$ cm²s⁻¹, CS = 4.8 °C and $A_{sc} = 1.3$. These values are selected to be
¹⁷³ consistent with the bivariate joint pdfs presented in Olson *et al.* [2012].

¹⁷⁴ The 'Inf. Priors' experiment examines the role of priors. It uses informative priors for
¹⁷⁵ CS (Figure 3) and K_{bg} following the default case of Olson *et al.* [2012]. 'Inf. Priors' has
¹⁷⁶ otherwise the same settings as 'Standard' (cf. Table 2).

3. Results and Discussion

¹⁷⁷ Our results suggest that the process driving unresolved internal climate variability is
¹⁷⁸ a key factor behind the current uncertainty in climate sensitivity estimates. Specifically,
¹⁷⁹ the average width of the estimated CS pdfs (as measured by the 68% posterior credible
¹⁸⁰ intervals) in the 'Nat. Var.' case is only modestly lower compared to the 'Standard' case
¹⁸¹ (Table 2, Figure 3). This indicates that even if we had perfect models of long term mean
¹⁸² climate, and errorless observations, our CS estimates would still remain very uncertain due
¹⁸³ to the confounding effect of the unresolved internal climate variability. The variability also
¹⁸⁴ appears to be a key factor in the second-order uncertainty in climate sensitivity (Figures

185 3 and 4). This uncertainty represents the sensitivity of estimated CS pdfs to different
186 realizations of the unresolved climate noise, and is measured by the standard deviation
187 of CS modes between the realizations. Specifically, while the standard deviation is 1.6 °C
188 in the 'Standard' case, it decreases only slightly to 1.4 °C in the 'Nat. Var.' case (Table
189 2). Of course, the pivotal role of the internal climate variability should not prevent us
190 from investing in better future observational systems. *Webster et al.* [2008] find, using a
191 simplified unresolved climate noise representation, that future observations are expected
192 to further reduce the CS uncertainty. Our results suggest that internal climate variability
193 presents a substantial obstacle to estimating climate sensitivity. Whether alternative
194 approaches that perform joint state and parameter estimation [*e.g.*, *Annan et al.*, 2005;
195 *Hill et al.*, 2012; *Evensen*, 2009] can overcome this challenge, is thus far an open question.

196 The CS estimation uncertainties increase at higher CS. Specifically, both pdf width and
197 scatter increase considerably compared to the 'Standard' case (Table 2, Figure 4). This
198 suggests that higher climate sensitivities can be difficult to detect if a particular realization
199 of climate noise biases the result low. This is consistent with the analytical model results
200 of *Hansen et al.* [1985] which show that the dependency of transient ocean warming on
201 climate sensitivity weakens at high CS. Thus, at high CS, a small uncertainty in a single
202 ocean surface warming observation implies a larger uncertainty in climate sensitivity. Our
203 numerical model shows similar response of atmospheric surface warming to changing CS.
204 Note that there are other complicating factors influencing the CS uncertainty, such as the
205 aerosol effects specified by A_{sc} .

206 Switching from uniform to informative priors (the 'Inf. Priors' experiment) substantially
207 reduces the CS uncertainty (Table 2, Figures 3 and 4). Under the informative priors, the

208 mean estimated CS mode (2.9°C) is somewhat lower than the 'true' value of 3.1°C . This
209 difference is statistically significant ($\alpha = 0.05$). This might be in part due to the biasing
210 effect of the mode of the CS prior, which is lower than the 'true' value. Both of these
211 effects (lower uncertainty but potential biases under narrower priors within the context of
212 OSSEs) have been previously found and discussed by *Webster et al.* [2008]. Thus, while
213 using informative priors can be a promising approach, care should be given to choosing
214 an appropriate prior.

215 Finally, each realization of internal climate variability can result in a considerable dis-
216 crepancy between the best CS estimate and the true value ('Nat. Var.' panels, Figures
217 3 and 4). The average discrepancy due to the unresolved internal variability is 1.1°C
218 (Table 2). One of the Nat. Var. experiments leads to an estimate of 7.5°C which is 4.4
219 $^{\circ}\text{C}$ higher than the 'true' value. The distribution of the discrepancy is positively skewed,
220 with a longer upper tail (Figure 4). Historical observational constraints on climate sen-
221 sitivity (*e.g.*, upper ocean heat content, and surface temperature) are based on a single
222 realization of internal climate variability process. Assuming that the biasing effects of
223 the observational and model errors are low, this realization can introduce a considerable
224 discrepancy between the best CS estimate and the true value. Given that scientific models
225 often share similar assumptions and might not be independent (see *Pennell and Reichler*
226 [2011] for a discussion of similarities in GCMs), it is possible that the bias due to the
227 internal variability can be in the same direction in studies using different models. As a
228 result, current best CS estimates from these datasets may be considerably higher or lower
229 than the true value. One of the ways to overcome this under-sampling problem is to use

²³⁰ independent constraints from other time periods (*e.g.*, Last Glacial Maximum, *Schmittner*
²³¹ *et al.* [2011]).

4. Caveats

²³² Our analysis uses many simplifying assumptions that point to several caveats and open
²³³ research questions. First, our Earth System model relies on a number of approximations
²³⁴ and neglects some historic forcings (*e.g.*, indirect effects of anthropogenic sulfates; and
²³⁵ tropospheric ozone [Forster *et al.*, 2007]). Second, we do not fully account for past forc-
²³⁶ ing uncertainties. Third, we change climate sensitivity using a very simplistic approach
²³⁷ by varying longwave radiative feedbacks, while shortwave feedbacks are also uncertain
²³⁸ [Bony *et al.*, 2006]. Fourth, our statistical model does not include any cross-correlation
²³⁹ among the residuals for T and OHC, and relies on a simple AR(1) structure. However,
²⁴⁰ our exploratory data analysis suggests that this structure is a reasonable approximation
²⁴¹ to the underlying statistical processes. Fifth, we use a relatively small number of realiza-
²⁴² tions in the OSSEs to keep the computational burden manageable. Sixths, our estimates
²⁴³ of internal climate variability rely on three climate models. Using more models might
²⁴⁴ provide a better sample. Seventh, there is a distinct possibility that climate models con-
²⁴⁵ siderably underestimate the observed decadal OHC variability (*e.g.*, Levitus *et al.* [2001],
²⁴⁶ Hansen *et al.* [2005]; but see AchutaRao *et al.* [2007] for an alternative view). If true,
²⁴⁷ we hypothesize that the CS uncertainty in the 'Nat. Var.' experiment would increase,
²⁴⁸ which would strengthen our conclusion that natural variability is an important driver of
²⁴⁹ the uncertainty in climate sensitivity. Last, but not least, we rely on uniform priors in
²⁵⁰ most experiments. We have chosen to work with the relatively simple prior specification
²⁵¹ because it still remains an open question to find more informative priors that lead to good

²⁵² bias, and coverage properties. Finally, we explore only a small subset of uncertainty in
²⁵³ unresolved climate noise and in climate model parameters.

5. Conclusions

²⁵⁴ We use Observation System Simulation Experiments (OSSEs) to analyze the effects
²⁵⁵ of unresolved internal climate variability on the uncertainty in climate sensitivity. We
²⁵⁶ repeatedly simulate pseudo-observations from an Earth System Model with a given climate
²⁵⁷ sensitivity, and then re-estimate the sensitivity using a Bayesian inversion method.

²⁵⁸ We find that unresolved internal climate variability is a key driver of the first-order (as
²⁵⁹ measured by the 68% posterior credible internal) and the second-order (as measured by
²⁶⁰ standard deviation of the estimated modes) uncertainty in climate sensitivity estimates.

²⁶¹ A single realization of the statistical process driving the variability can introduce a sub-
²⁶² stantial discrepancy between a CS estimate and the true value. Since recent CS estimates
²⁶³ using instrumental temperature and upper ocean heat content observations all rely on
²⁶⁴ the same realization, they may be considerably higher or lower than the true CS. The
²⁶⁵ unresolved internal variability represents a critical roadblock: our research suggests that
²⁶⁶ even if we at present had errorless models and observations, current estimation approaches
²⁶⁷ would still result in considerable CS uncertainty. Exploring the power of combined state
²⁶⁸ and parameter estimation [*e.g.*, Annan *et al.*, 2005; Hill *et al.*, 2012; Evensen, 2009] to
²⁶⁹ confront this challenge is the subject of future research.

Appendix

²⁷⁰ This appendix provides the likelihood function for observations if the statistical model
²⁷¹ is given by Equations 2 and 3. We define $\mathbf{y}_k = y_{1,k}, \dots, y_{N_k,k}$ where N_k is the number of

²⁷² observations for diagnostic k , and k refers to a diagnostic (*i.e.* $k = 1$ for temperature,
²⁷³ and $k = 2$ for ocean heat content). The likelihood function for observations \mathbf{y}_k given the
²⁷⁴ model and the statistical parameters is given by [Bence, 1995; Olson *et al.*, 2012]:

$$L(\mathbf{y}_k|K_{bg}, CS, A_{sc}, \sigma_k, \rho_k, b_k) = \left(2\pi\sigma_{p,k}^2\right)^{-1/2} \exp\left(-\frac{1}{2}\frac{n_{1,k}^2}{\sigma_{p,k}^2}\right) \times \\ \times \left(2\pi\sigma_k^2\right)^{-(N_k-1)/2} \times \exp\left(-\frac{1}{2\sigma_k^2} \sum_{t=2}^{N_k} w_{t,k}^2\right).$$

Here $\sigma_{p,k}^2$ refers to the stationary process variance and is defined by $\sigma_{p,k}^2 = \sigma_k^2/(1 - \rho_k^2)$,
and $w_{t,k}$ are whitened bias-corrected residuals. The whitened residuals are calculated as
 $w_{t,k} = n_{t,k} - \rho_k n_{t-1,k}$ for $t > 1$. Assuming the independence of the residuals (between the
model and the pseudo-observations) across different diagnostics, the final likelihood for
all pseudo-observations $\mathbf{Y} \equiv (\mathbf{y}_T, \mathbf{y}_{OHC})$ is the product of the individual likelihoods:

$$L(\mathbf{Y}|\Theta) = L(\mathbf{y}_T|K_{bg}, CS, A_{sc}, \sigma_T, \rho_T, b_T) \times L(\mathbf{y}_{OHC}|K_{bg}, CS, A_{sc}, \sigma_{OHC}, \rho_{OHC}) \quad (4)$$

²⁷⁵ **Acknowledgments.** This work was supported by NSF through the Network for Sus-
tainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-
²⁷⁶ 1240507, and through the Center for Climate and Energy Decision Making under the
²⁷⁷ cooperative agreement SES-0949710 between the NSF and Carnegie Mellon University.
²⁷⁸ We are grateful to Michael Eby and to the developers of UVic ESCM for providing the
²⁷⁹ model and for discussions and advice. This study would not have been possible without
²⁸⁰ the efforts of scientists who collected the observations used in this study. We acknowl-
²⁸¹ edge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison
²⁸² (PCMDI) and the WCRP's Working Group on Coupled Modelling (WGCM) for their roles
²⁸³ in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is
²⁸⁴ provided by the US Department of Energy's Climate Program Office and National Science

285 provided by the Office of Science, U.S. Department of Energy. This research uses data
286 provided by the Bergen Climate Model (BCM) project (www.bcm.uib.no) at the Bjerknes
287 Centre for Climate Research, largely funded by the Research Council of Norway. Further-
288 more, we thank the scientists at the Met Office Hadley Center, and Geophysical Fluid
289 Dynamics Laboratory for producing the GCM output used in this study. All views, errors,
290 and opinions are solely that of the authors.

References

291 AchutaRao, K. M., M. Ishii, B. D. Santer, P. J. Gleckler, K. E. Taylor, T. P. Barnett,
292 D. W. Pierce, R. J. Stouffer, and T. M. L. Wigley (2007), Simulated and observed
293 variability in ocean temperature and heat content, *Proc. Natl. Acad. Sci.*, 104(26),
294 10,768–10,773.

295 Andronova, N., M. Schlesinger, S. Dessai, M. Hulme, and B. Li (2007), The concept of
296 climate sensitivity: History and development, in *Human-induced Climate Change: An*
297 *Interdisciplinary Assessment*, edited by M. Schlesinger, H. Kheshgi, J. Smith, F. de la
298 Chesnaye, J. M. Reilly, T. Wilson, and C. Kolstad, Cambridge University Press.

299 Annan, J. D., J. C. Hargreaves, N. R. Edwards, and R. Marsh (2005), Parameter esti-
300 mation in an intermediate complexity earth system model using an ensemble Kalman
301 filter, *Ocean Modelling*, 8(1-2), 135–154, doi:10.1016/j.ocemod.2003.12.004.

302 Baede, A. P. M. (2007), Annex I: Glossary, in *Climate Change 2007: The Physical Science*
303 *Basis. Contribution of Working Group I to the Fourth Assessment Report of the Inter-*
304 *governmental Panel on Climate Change*, edited by S. Solomon, D. Qin, M. Manning,
305 Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Cambridge University
306 Press, Cambridge, United Kingdom and New York, NY, USA.

307 Bence, J. R. (1995), Analysis of short time series – Correcting for autocorrelation, *Ecology*,
308 76(2), 628–639.

309 Bhat, K. S., M. Haran, R. Olson, and K. Keller (2012), Inferring likelihoods and climate
310 system characteristics from climate models and multiple tracers, *Environmetrics*, 23(4),
311 345–362, doi:10.1002/env.2149.

³¹² Bony, S., et al. (2006), How well do we understand and evaluate climate change feedback
³¹³ processes?, *J. Clim.*, 19(15), 3445–3482.

³¹⁴ Brohan, P., J. J. Kennedy, I. Harris, S. F. B. Tett, and P. D. Jones (2006), Uncertainty
³¹⁵ estimates in regional and global observed temperature changes: A new data set from
³¹⁶ 1850, *J. Geophys. Res. [Atmos.]*, 111(D12), doi:10.1029/2005JD006548.

³¹⁷ Bryden, H. L. (1973), New polynomials for thermal expansion, adiabatic temperature
³¹⁸ gradient and potential temperature of sea-water, *Deep-Sea Res.*, 20(4), 401–408, doi:
³¹⁹ 10.1016/0011-7471(73)90063-6.

³²⁰ Cleveland, W. S. (1979), Robust Locally Weighted Regression and Smoothing Scatter-
³²¹ plots, *J. Am. Stat. Assoc.*, 74(368), 829–836, doi:10.2307/2286407.

³²² Delworth, T., et al. (2006), GFDL's CM2 global coupled climate models. Part I: Formu-
³²³ lation and simulation characteristics, *J. Clim.*, 19(5), 643–674.

³²⁴ Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker,
³²⁵ and J. R. Dunn (2008), Improved estimates of upper-ocean warming and multi-decadal
³²⁶ sea-level rise, *Nature*, 453(7198), 1090–U6, doi:10.1038/nature07080.

³²⁷ Drignei, D., C. E. Forest, and D. Nychka (2008), Parameter estimation for computationally
³²⁸ intensive nonlinear regression with an application to climate modeling, *Ann. Appl. Stat.*,
³²⁹ 2(4), 1217–1230, doi:10.1214/08-AOAS210.

³³⁰ Edwards, N. R., D. Cameron, and J. Rougier (2011), Precalibrating an intermediate
³³¹ complexity climate model, *Clim. Dyn.*, 37(7-8), 1469–1482, doi:10.1007/s00382-010-
³³² 0921-0.

³³³ Edwards, T. L., M. Crucifix, and S. P. Harrison (2007), Using the past to constrain the
³³⁴ future: how the palaeorecord can improve estimates of global warming, *Prog. Phys.*

³³⁵ *Geog.*, 31(5), 481–500, doi:10.1177/0309133307083295.

³³⁶ Evensen, G. (2009), The Ensemble Kalman Filter for Combined State and Parameter
³³⁷ Estimation. Monte Carlo Techniques for Data Assimilation in Large Systems, *IEEE*
³³⁸ *Control Systems Magazine*, 29(3), 83–104, doi:10.1109/MCS.2009.932223.

³³⁹ Fofonoff, N. P. (1977), Computation of potential temperature of seawater for an arbitrary
³⁴⁰ reference pressure, *Deep-Sea Res.*, 24(5), 489–491, doi:10.1016/0146-6291(77)90485-4.

³⁴¹ Forest, C. E., P. H. Stone, A. P. Sokolov, M. R. Allen, and M. D. Webster (2002),
³⁴² Quantifying uncertainties in climate system properties with the use of recent climate
³⁴³ observations, *Science*, 295(5552), 113–117.

³⁴⁴ Forest, C. E., P. H. Stone, and A. P. Sokolov (2006), Estimated PDFs of climate system
³⁴⁵ properties including natural and anthropogenic forcings, *Geophys. Res. Lett.*, 33(1),
³⁴⁶ doi:10.1029/2005GL023977.

³⁴⁷ Forster, P., et al. (2007), Changes in Atmospheric Constituents and in Radiative Forcing,
³⁴⁸ in *Climate Change 2007: The Physical Science Basis. Contribution of Working Group*
³⁴⁹ *I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*,
³⁵⁰ edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tig-
³⁵¹ nor, and H. L. Miller, Cambridge Univ. Press, Cambridge, United Kingdom and New
³⁵² York, NY, USA.

³⁵³ Gnanadesikan, A., et al. (2006), GFDL's CM2 global coupled climate models. Part II:
³⁵⁴ The baseline ocean simulation, *J. Clim.*, 19(5), 675–697.

³⁵⁵ Gordon, C., C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns, J. F. B.
³⁵⁶ Mitchell, and R. A. Wood (2000), The simulation of SST, sea ice extents and ocean heat
transports in a version of the Hadley Centre coupled model without flux adjustments,

³⁵⁸ Hansen, *J. Clim. Dyn.*, 16(2-3), 147–168.

³⁵⁹ Hansen, J., G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone (1985), Climate Response
³⁶⁰ Times - Dependence on Climate Sensitivity and Ocean Mixing, *Science*, 229(4716),
³⁶¹ 857–859, doi:10.1126/science.229.4716.857.

³⁶² Hansen, J., et al. (2005), Earth's energy imbalance: Confirmation and implications, *Sci-
363 ence*, 308(5727), 1431–1435, doi:10.1126/science.1110252.

³⁶⁴ Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains and their
³⁶⁵ applications, *Biometrika*, 57(1), 97–109.

³⁶⁶ Hegerl, G. C., F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. A. Marengo Orsini,
³⁶⁷ N. Nicholls, J. E. Penner, and P. A. Stott (2007), Understanding and Attributing Cli-
³⁶⁸ mate Change, in *Climate Change 2007: The Physical Science Basis. Contribution of
369 Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
370 Climate Change*, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis,
³⁷¹ K. B. Averyt, M. Tignor, and H. L. Miller, Cambridge Univ. Press, Cambridge, United
³⁷² Kingdom and New York, NY, USA.

³⁷³ Hill, T. C., E. Ryan, and M. Williams (2012), The use of CO₂ flux time series for parameter
³⁷⁴ and carbon stock estimation in carbon cycle research, *Glob. Change Biol.*, 18(1), 179–
³⁷⁵ 193, doi:10.1111/j.1365-2486.2011.02511.x.

³⁷⁶ Holden, P. B., N. R. Edwards, K. I. C. Oliver, T. M. Lenton, and R. D. Wilkinson
³⁷⁷ (2010), A probabilistic calibration of climate sensitivity and terrestrial carbon change
³⁷⁸ in GENIE-1, *Clim. Dyn.*, 35(5), 785–806.

³⁷⁹ Huang, Y., S. Leroy, P. J. Gero, J. Dykema, and J. Anderson (2010a), Separation of
³⁸⁰ longwave climate feedbacks from spectral observations, *J. Geophys. Res.-Atm.*, 115,

381 doi:10.1029/2009JD012766, D07104.

382 Huang, Y., S. S. Leroy, and J. G. Anderson (2010b), Determining Longwave Forcing
383 and Feedback Using Infrared Spectra and GNSS Radio Occultation, *J. Clim.*, 23(22),
384 6027–6035, doi:10.1175/2010JCLI3588.1.

385 Johns, T. C., et al. (2003), Anthropogenic climate change for 1860 to 2100 simulated with
386 the HadCM3 model under updated emissions scenarios, *Clim. Dyn.*, 20(6), 583–612,
387 doi:10.1007/s00382-002-0296-y.

388 Knutti, R., and G. C. Hegerl (2008), The equilibrium sensitivity of the Earth's tempera-
389 ture to radiation changes, *Nature Geosc.*, 1(11), 735–743, doi:10.1038/ngeo337.

390 Knutti, R., T. F. Stocker, F. Joos, and G. K. Plattner (2003), Probabilistic climate change
391 projections using neural networks, *Clim. Dyn.*, 21(3-4), 257–272, doi:10.1007/s00382-
392 003-0345-1.

393 Levitus, S., J. I. Antonov, J. L. Wang, T. L. Delworth, K. W. Dixon, and A. J. Broccoli
394 (2001), Anthropogenic warming of Earth's climate system, *Science*, 292(5515), 267–270,
395 doi:10.1126/science.1058154.

396 Lovett, J. R. (1978), Merged Seawater Sound-Speed Equations, *J. Ac. Soc. Am.*, 63(6),
397 1713–1718, doi:10.1121/1.381909.

398 Matthews, H. D., and K. Caldeira (2007), Transient climate-carbon simulations of
399 planetary geoengineering, *Proc. Natl. Acad. Sci. U. S. A.*, 104(24), 9949–9954, doi:
400 10.1073/pnas.0700419104.

401 Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouf-
402 fer, and K. E. Taylor (2007), The WCRP CMIP3 multi-model dataset - A new era in cli-
403 mate change research, *Bull. Am. Meteorol. Soc.*, 88(9), 1383–1394, doi:10.1175/BAMS-

404 88-9-1383.

405 Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953),
406 Equation of state calculations by fast computing machines, *J. Chem. Phys.*, 21(6),
407 1087–1092.

408 Olson, R., R. Srivastava, M. Goes, N. M. Urban, H. D. Matthews, M. Haran, and K. Keller
409 (2012), A climate sensitivity estimate using Bayesian fusion of instrumental observations
410 and an Earth System model, *J. Geophys. Res.*, 117, doi:10.1029/2011JD016620, D04103.

411 Ottera, O. H., M. Bentsen, I. Bethke, and N. G. Kvamstø (2009), Simulated pre-industrial
412 climate in Bergen Climate Model (version 2): model description and large-scale circu-
413 lation features, *Geosci. Mod. Dev.*, 2(2), 197–212.

414 Pennell, C., and T. Reichler (2011), On the Effective Number of Climate Models, *J. Clim.*,
415 24(9), 2358–2367, doi:10.1175/2010JCLI3814.1.

416 Pope, V. D., M. L. Gallani, P. R. Rowntree, and R. A. Stratton (2000), The impact of
417 new physical parametrizations in the Hadley Centre climate model: HadAM3, *Clim.*
418 *Dyn.*, 16(2-3), 123–146.

419 Sanso, B., and C. Forest (2009), Statistical calibration of climate system properties, *J.*
420 *Royal Stat. Soc. Ser. C - App. Stat.*, 58(Part 4), 485–503.

421 Schmittner, A., N. M. Urban, J. D. Shakun, N. M. Mahowald, P. U. Clark, P. J. Bartlein,
422 A. C. Mix, and A. Rosell-Mele (2011), Climate Sensitivity Estimated from Temperature
423 Reconstructions of the Last Glacial Maximum, *Science*, 334(6061), 1385–1388, doi:
424 10.1126/science.1203513.

425 Serra, P., A. Amblard, P. Temi, D. Burgarella, E. Giovannoli, V. Buat, S. Noll, and S. Im
426 (2011), CIGALEMC: Galaxy Parameter Estimation Using a Markov Chain Monte Carlo

427 Approach with CIGALE, *Astrophys. J.*, 740(1), doi:10.1088/0004-637X/740/1/22.

428 Tomassini, L., P. Reichert, R. Knutti, T. F. Stocker, and M. E. Borsuk (2007), Robust
429 Bayesian uncertainty analysis of climate system properties using Markov chain Monte
430 Carlo methods, *J. Clim.*, 20(7), 1239–1254, doi:10.1175/JCLI4064.1.

431 UNESCO (1981), Tenth Report of the Joint Panel on Oceanographic Tables and Stan-
432 dards, *Tech. rep.*, UNESCO Technical Reports on Marine Science 36.

433 Urban, N. M., and K. Keller (2009), Complementary observational constraints on climate
434 sensitivity, L04708, *Geophys. Res. Lett.*, 36, doi:10.1029/2008GL036457.

435 Urban, N. M., and K. Keller (2010), Probabilistic hindcasts and projections of the cou-
436 pled climate, carbon cycle and Atlantic meridional overturning circulation system: A
437 Bayesian fusion of century-scale observations with a simple model, *Tellus Ser. A - Dyn.*
438 *Met. Ocean.*, 62(5), 737–750, doi:10.1111/j.1600-0870.2010.00471.x.

439 Weaver, A. J., et al. (2001), The UVic Earth System Climate Model: Model description,
440 climatology, and applications to past, present and future climates, *Atmos.-Ocean*, 39(4),
441 361–428.

442 Webster, M., L. Jakobovits, and J. Norton (2008), Learning about climate change and
443 implications for near-term policy, *Clim. Change*, 89(1-2), 67–85, doi:10.1007/s10584-
444 008-9406-0.

445 Zakamska, N. L., M. Pan, and E. B. Ford (2011), Observational biases in determining
446 extrasolar planet eccentricities in single-planet systems, *Mon. Not. R. Astron. Soc.*,
447 410(3), 1895–1910, doi:10.1111/j.1365-2966.2010.17570.x.

Table 1: Ranges for model and statistical parameters. Subscripts T and OHC refer to surface air temperature and upper ocean heat content respectively

Parameter	Units	Lower Bound	Upper Bound
K_{bg}	$\text{cm}^2 \text{ s}^{-1}$	0.1	0.5
CS	$^{\circ}\text{C}$ per CO_2 doubling	1.1	11.2
A_{sc}	unitless	0	3
σ_T	$^{\circ}\text{C}$	0.01	inf
σ_{OHC}	$1 \times 10^{22} \text{ J}$	0.01	inf
ρ_T	unitless	0.01	0.999
ρ_{OHC}	unitless	0.01	0.999
b_T	$^{\circ}\text{C}$	-0.51	0.50

Table 2: Summary of the design and the results of the observation system simulation experiments. 'Unif.' refers to uniform priors for climate parameters, and 'Inf.' refers to informative priors for K_{bg} and CS following the default case of *Olson et al.* [2012]. The mean 68% CI refers to the mean 68% posterior credible interval of CS estimates. The interval is calculated as the range between the 16th and the 84th percentiles of the CS chains.

Experiment	Priors	Experiment details					Properties of CS estimates [°C]			
		σ_T [°C]	σ_{OHC} [$\times 10^{22}$ J]	ρ_T	ρ_{OHC}	Assumed 'true' CS [°C]	Average mode	Average absolute bias of the mode	Std. of modes	Mean 68% CI of pdfs
'Standard'	Unif.	0.10	2.6	0.58	0.079	3.1	3.3	1.1	1.6	3.5
'Nat. Var.'	Unif.	0.12	0.51	0.45	0.9	3.1	3.7	1.1	1.4	3.0
'Higher CS'	Unif.	0.10	2.6	0.58	0.079	4.8	5.8	2.0	2.6	4.5
'Inf. Priors'	Inf.	0.10	2.6	0.58	0.079	3.1 ^a	2.9	0.36	0.41	1.5

^a While 'true' input CS is 3.1 °C, the mean of the non-uniform prior is 3.25 °C, and the mode is 2.96 °C.

Figure Captions

448 **Figure 1:** Statistical properties of surface atmospheric temperature anomaly (T) time series
 449 - AR(1) innovation standard deviation σ_T , and first order autocorrelation ρ_T : GCMs (BCCR-
 450 BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
 451 triangle), residuals between the UVic ESCM and the observations from *Brohan et al.* [2006]
 452 (years 1850-2006, blue triangle), and detrended observations from *Brohan et al.* [2006] (years
 453 1850-2006, green triangle). For the residuals, we use the marginal mode for the base case of
 454 *Olson et al.* [2012]. For the detrended observations, we first demean the yearly observations, and
 455 then detrend them using a lowess fit trend. Grey contours show the process standard deviation
 456 $\sigma_{p,T}$ (cf. Appendix). We use yearly average time series for the AR(1) inference.

457 **Figure 2:** Statistical properties of ocean heat content anomaly in the 0-700 m layer (OHC) -
 458 AR(1) innovation standard deviation σ_{OHC} , and first order autocorrelation ρ_{OHC} : GCMs (BCCR-
 459 BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red
 460 triangle), residuals between the UVic ESCM and the observations from *Domingues et al.* [2008]
 461 (years 1950-2003, blue triangle), and detrended observations from *Domingues et al.* [2008] (years
 462 1950-2003, green triangle). For the residuals, we use the marginal mode for the base case of
 463 *Olson et al.* [2012]. For the detrended observations, we first demean the yearly observations,
 464 and then detrend them using a lowess fit trend. Grey contours show process standard deviation
 465 $\sigma_{p,OHC}$ (cf. Appendix). We use yearly average time series for the AR(1) inference.

466 **Figure 3:** Posterior probability distributions (pdfs) for climate sensitivity from observation
 467 system simulation experiments: (top left) 'Standard', (top right) 'Nat. Var.', (bottom left) 'Higher
 468 CS' and (bottom right) 'Inf. Priors'. Each grey line corresponds to one realization of unresolved
 469 climate noise. 'True' input climate sensitivities are shown by vertical dotted lines. The dashed

470 pdf denotes CS prior in the 'Inf. Priors' experiment. Filled (open) red circles denote the mean
471 (median) CS mode, and the red lines extend one standard deviation around the mean mode. The
472 limits of the y-axes are the same between panels.

473 **Figure 4:** Histograms of the modes of the estimated climate sensitivity probability density
474 functions: (top left) 'Standard', (top right) 'Nat. Var', (bottom left) 'Higher CS', and (bottom
475 right) 'Inf. Priors'. 'True' input climate sensitivities are shown by vertical red lines. Y-axes
476 limits are the same between panels.

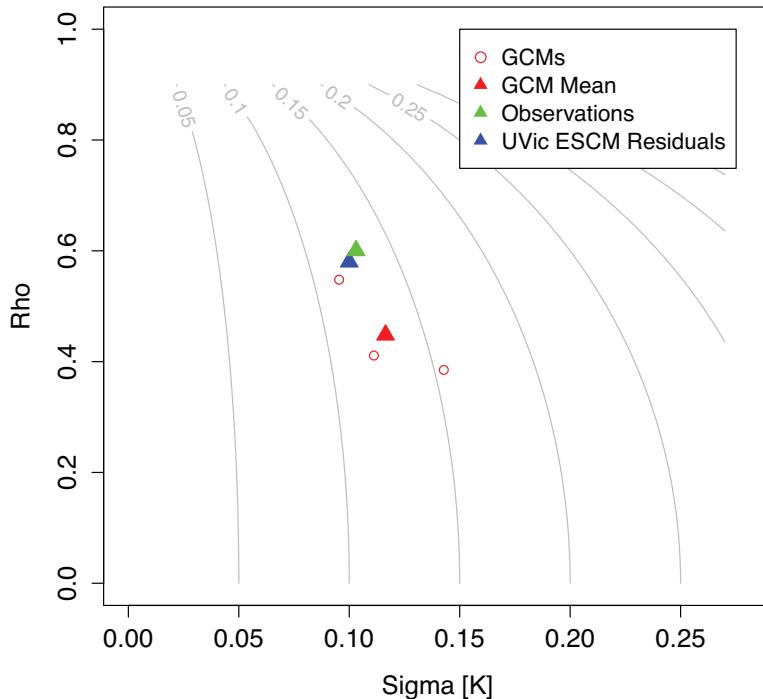


Figure 1: Statistical properties of surface atmospheric temperature anomaly (T) time series - AR(1) innovation standard deviation σ_T , and first order autocorrelation ρ_T : GCMs (BCCR-BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red triangle), residuals between the UVic ESCM and the observations from *Brohan et al.* [2006] (years 1850-2006, blue triangle), and detrended observations from *Brohan et al.* [2006] (years 1850-2006, green triangle). For the residuals, we use the marginal mode for the base case of *Olson et al.* [2012]. For the detrended observations, we first demean the yearly observations, and then detrend them using a lowess fit trend. Grey contours show the process standard deviation $\sigma_{p,T}$ (cf. Appendix). We use yearly average time series for the AR(1) inference.

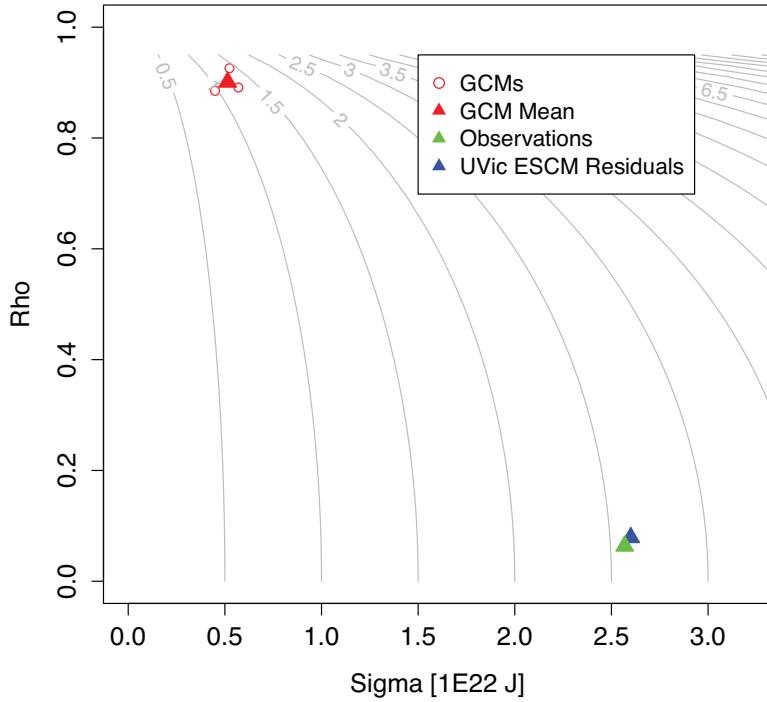


Figure 2: Statistical properties of ocean heat content anomaly in the 0-700 m layer (OHC) - AR(1) innovation standard deviation σ_{OHC} , and first order autocorrelation ρ_{OHC} : GCMs (BCCR-BCM2.0, GFDL-CM2.1 and UKMO-HadCM3, red circles), mean across the three GCMs (red triangle), residuals between the UVic ESCM and the observations from *Domingues et al.* [2008] (years 1950-2003, blue triangle), and detrended observations from *Domingues et al.* [2008] (years 1950-2003, green triangle). For the residuals, we use the marginal mode for the base case of *Olson et al.* [2012]. For the detrended observations, we first demean the yearly observations, and then detrend them using a lowess fit trend. Grey contours show process standard deviation $\sigma_{p,OHC}$ (cf. Appendix). We use yearly average time series for the AR(1) inference.

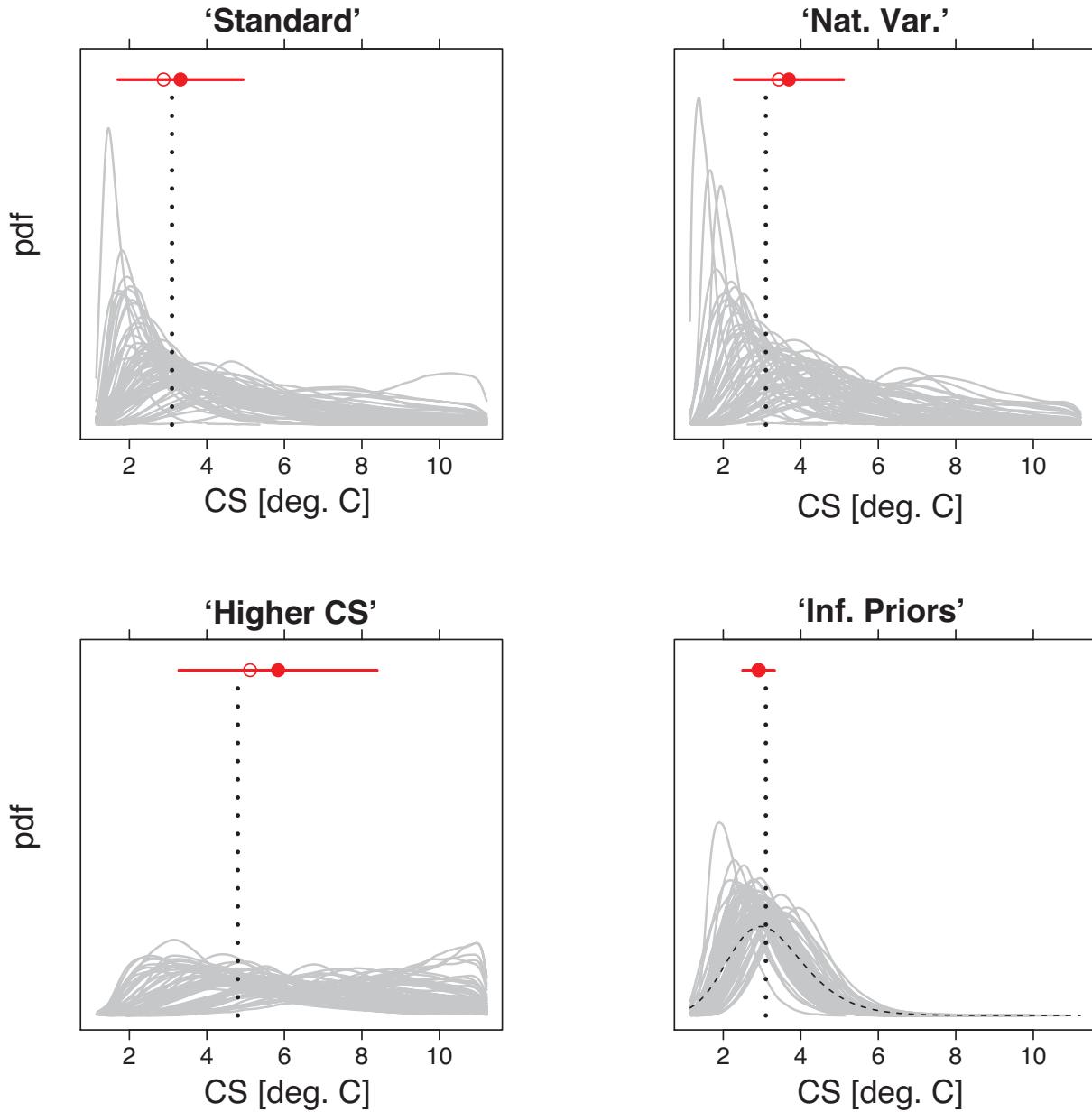


Figure 3: Posterior probability distributions (pdfs) for climate sensitivity from observation system simulation experiments: (top left) 'Standard', (top right) 'Nat. Var.', (bottom left) 'Higher CS' and (bottom right) 'Inf. Priors'. Each grey line corresponds to one realization of unresolved climate noise. 'True' input climate sensitivities are shown by vertical dotted lines. The dashed pdf denotes CS prior in the 'Inf. Priors' experiment. Filled (open) red circles denote the mean (median) CS mode, and the red lines extend one standard deviation around the mean mode. The limits of the y-axes are the same between panels.

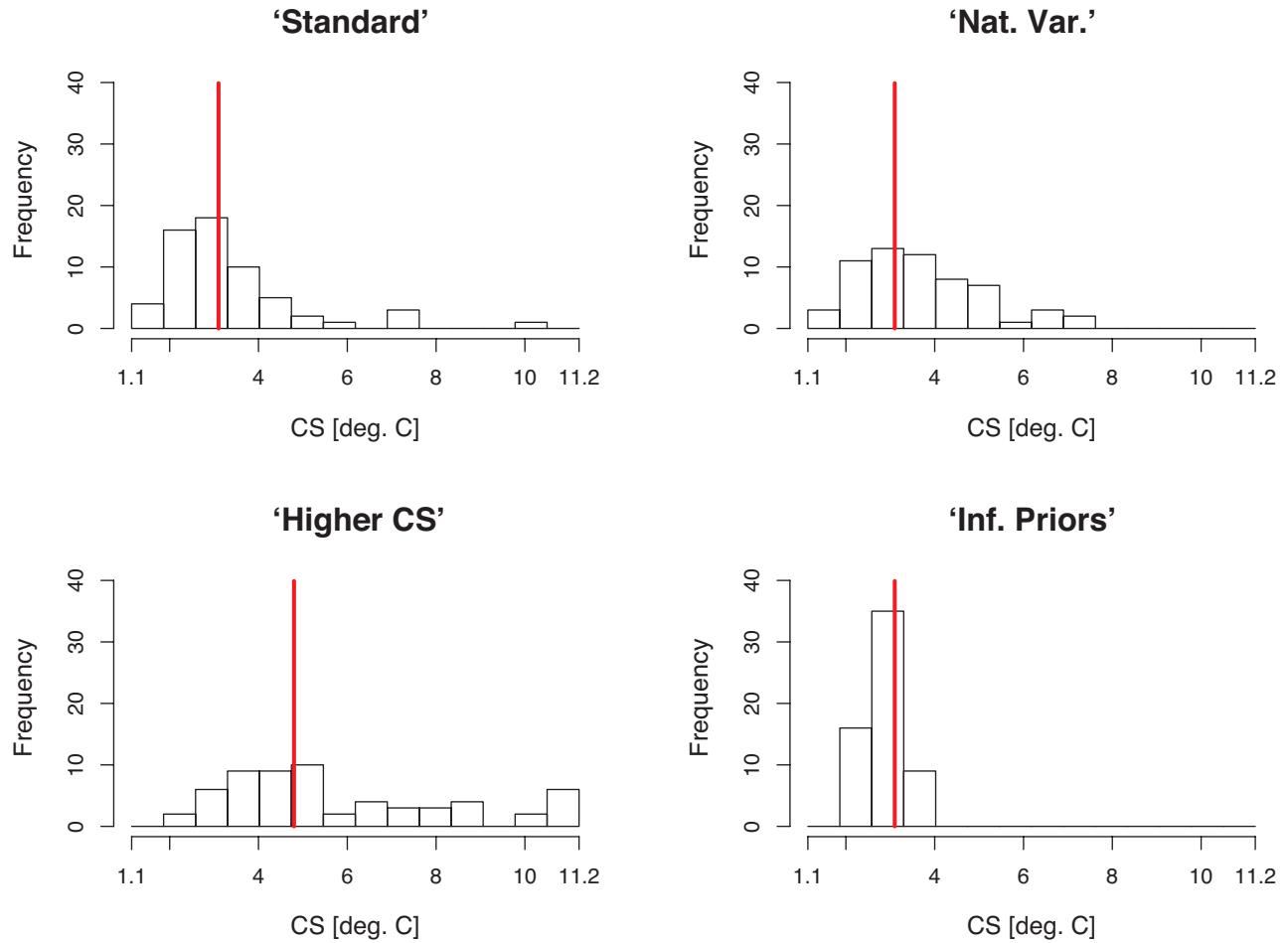


Figure 4: Histograms of the modes of the estimated climate sensitivity probability density functions: (top left) 'Standard', (top right) 'Nat. Var', (bottom left) 'Higher CS', and (bottom right) 'Inf. Priors'. 'True' input climate sensitivities are shown by vertical red lines. Y-axes limits are the same between panels.