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Abstract

Current reporting of results based on Markov chain Monte Carlo computations could

be improved. In particular, a measure of the accuracy of the resulting estimates is rarely

reported. Thus we have little ability to objectively assess the quality of the reported estimates.

We address this issue in that we discuss why Monte Carlo standard errors are important, how

they can be easily calculated in Markov chain Monte Carlo and how they can be used to decide

when to stop the simulation. We compare their use to a popular alternative in the context

of two examples.
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1 Introduction

Hoaglin and Andrews (1975) consider the general problem of what information should be

included in publishing computation-based results. The goal of their suggestions was “...to

make it easy for the reader to make reasonable assessments of the numerical quality of the

results.” In particular, Hoaglin and Andrews suggested that it is crucial to report some notion

of the accuracy of the results and, for Monte Carlo studies this should include estimated

standard errors. However, in settings where Markov chain Monte Carlo (MCMC) is used

there is a culture of rarely reporting such information. For example, we looked at the issues

published in 2006 of Journal of the American Statistical Association, Biometrika and Journal

of the Royal Statistical Society, Series B. In these journals we found 39 papers that used

MCMC. Only 3 of them directly addressed the Monte Carlo error in the reported estimates.

Thus it is apparent that the readers of the other papers have little ability to objectively assess

the quality of the reported estimates. We attempt to address this issue in that we discuss

why Monte Carlo standard errors are important, how they can be easily calculated in MCMC

settings and compare their use to a popular alternative.

Simply put, MCMC is a method for using a computer to generate data and subsequently

using standard large sample statistical methods to estimate fixed, unknown quantities of a

given target distribution. (Thus, we object to calling it ‘Bayesian Computation’.) That is, it

is used to produce a point estimate of some characteristic of a target distribution π having

support X. The most common use of MCMC is to estimate Eπg :=
∫
X g(x) π(dx) where g is

a real-valued, π-integrable function on X.

Suppose that X = {X1, X2, X3, . . . } is an aperiodic, irreducible, positive Harris recurrent

Markov chain with state space X and invariant distribution π (for definitions see Meyn and

Tweedie, 1993). In this case X is Harris ergodic. Typically, estimating Eπg is natural since

an appeal to the Ergodic Theorem implies that if Eπ|g| < ∞ then, with probability 1,

ḡn :=
1
n

n∑

i=1

g(Xi) → Eπg as n →∞. (1)

The MCMC method entails constructing a Markov chain X satisfying the regularity condi-

tions described above and then simulating X for a finite number of steps, say n, and using
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ḡn to estimate Eπg. The popularity of MCMC largely is due to the ease with which such an

X can be simulated (Chen, Shao and Ibrahim, 2000; Liu, 2001; Robert and Casella, 1999).

An obvious question is when should we stop the simulation? That is, how large should

n be? Or, when is ḡn a good estimate of Eπg? In a given application we usually have

an idea about how many significant figures we want in our estimate but how should this

be assessed? Responsible statisticians and scientists want to do the right thing but output

analysis in MCMC has become a muddled area with often conflicting advice and dubious

terminology. This leaves many in a position where they feel forced to rely on intuition,

folklore and heuristics. We believe this often leads to some poor practices: (A) Stopping

the simulation too early, (B) Wasting potentially useful samples, and, most importantly, (C)

Providing no notion of the quality of ḡn as an estimate of Eπg. In this paper we focus on

issue (C) but touch briefly on (A) and (B).

The rest of this paper is organized as follows. In Section 2 we briefly introduce some

basic concepts from the theory of Markov chains. In Section 3 we consider estimating the

Monte Carlo error of ḡn. Then Section 4 covers two methods for stopping the simulation

and compares them in a toy example. In Section 5 the two methods are compared again in

a realistic spatial model for a data set on wheat crop flowering dates in North Dakota. We

close with some final remarks in Section 6.

2 Markov Chain Basics

Suppose that X = {X1, X2, . . . } is a Harris ergodic Markov chain with state space X and

invariant distribution π. For n ∈ N := {1, 2, 3, . . .} let Pn(x, ·) be the n-step Markov transition

kernel; that is, for x ∈ X and a measurable set A, Pn(x,A) = Pr (Xn+i ∈ A | Xi = x). An

extremely useful property of X is that the chain will converge to the invariant distribution.

Specifically,

‖Pn(x, ·)− π(·)‖ ↓ 0 as n →∞,

where the left-hand side is the total variation distance between Pn(x, ·) and π(·). (This is

stronger than convergence in distribution.) The Markov chain X is geometrically ergodic if
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there exists a constant 0 < t < 1 and a function M : X → R+ such that for any x ∈ X,

‖Pn(x, ·)− π(·)‖ ≤ M(x) tn (2)

for n ∈ N. If M(x) is bounded, then X is uniformly ergodic. Thus uniform ergodicity implies

geometric ergodicity. However, as one might imagine, finding M and t directly is often quite

difficult in realistic settings.

There has been a substantial amount of effort devoted to establishing (2) in MCMC set-

tings. For example, Hobert and Geyer (1998), Johnson and Jones (2008), Jones and Hobert

(2004), Marchev and Hobert (2004), Mira and Tierney (2002), Robert (1995), Roberts and

Polson (1994), Roberts and Rosenthal (1999), Rosenthal (1995, 1996), Roy and Hobert (2007),

and Tierney (1994) examined Gibbs samplers while Christensen, Moller and Waagepetersen

(2001), Douc, Fort, Moulines and Soulier (2004), Fort and Moulines (2000), Fort and Moulines

(2003), Geyer (1999), Jarner and Hansen (2000), Jarner and Roberts (2002), Meyn and

Tweedie (1994), and Mengersen and Tweedie (1996) considered Metropolis-Hastings algo-

rithms.

3 Monte Carlo Error

A Monte Carlo approximation is not exact. The number ḡn is not the exact value of the

integral we are trying to approximate. It is off by some amount, the Monte Carlo error,

ḡn −Eπg. How large is the Monte Carlo error? Unfortunately, we can never know unless we

know Eπg.

We don’t know the Monte Carlo error, but we can get a handle on its sampling distribution.

That is, assessing the Monte Carlo error can be accomplished by estimating the variance of

the asymptotic distribution of ḡn. Under regularity conditions, the Markov chain X and

function g will admit a CLT. That is,

√
n(ḡn − Eπg) d→ N(0, σ2

g) (3)

as n →∞ where σ2
g := varπ{g(X1)}+2

∑∞
i=2 covπ{g(X1), g(Xi)}; the subscript π means that

the expectations are calculated assuming X1 ∼ π. The CLT holds for any initial distribution
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when either (i) X is geometrically ergodic and Eπ|g|2+δ < ∞ for some δ > 0 or (ii) X is

uniformly ergodic and Eπg2 < ∞. These are not the only sufficient conditions for a CLT

but are among the most straightforward to state; the interested reader is pointed to the

summaries provided by Jones (2004) and Roberts and Rosenthal (2004).

Given a CLT we can assess the Monte Carlo error in ḡn by estimating the variance, σ2
g .

That is, we can calculate and report an estimate of σ2
g , say σ̂2

g that will allow us to assess the

accuracy of the point estimate. There have been many techniques introduced for estimating

σ2
g ; see, among others, Bratley, Fox and Schrage (1987), Fishman (1996), Geyer (1992),

Glynn and Iglehart (1990), Glynn and Whitt (1991), Mykland, Tierney and Yu (1995) and

Roberts (1996). For example, regenerative simulation, batch means and spectral variance

estimators all can be appropriate in MCMC settings. We will consider only one of the

available methods, namely non-overlapping batch means. We chose this method is because

it is easy to implement and can enjoy desirable theoretical properties. However, overlapping

batch means has a reputation of sometimes being more efficient than non-overlapping batch

means. On the other hand, currently the spectral variance and overlapping batch means

estimators require stronger regularity conditions than non-overlapping batch means.

3.1 Batch Means

In non-overlapping batch means the output is broken into blocks of equal size. Suppose the

algorithm is run for a total of n = ab iterations (hence a = an and b = bn are implicit

functions of n) and define

Ȳj :=
1
b

jb∑

i=(j−1)b+1

g(Xi) for j = 1, . . . , a .

The batch means estimate of σ2
g is

σ̂2
g =

b

a− 1

a∑

j=1

(Ȳj − ḡn)2 . (4)

Batch means is attractive because it is easy to implement (and it is available in some software,

e.g. WinBUGS) but some authors encourage caution in its use (Roberts, 1996). In particular,
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we believe careful use is warranted since (4), in general, is not a consistent estimator of σ2
g .

On the other hand, Jones, Haran, Caffo and Neath (2006) showed that if the batch size

and the number of batches are allowed to increase as the overall length of the simulation

increases by setting bn = bnθc and an = bn/bnc, then σ̂2
g → σ2

g with probability 1 as n →∞.

In this case we call it consistent batch means (CBM) to distinguish it from the standard

(fixed number of batches) version. The regularity conditions require that X be geometrically

ergodic, Eπ|g|2+ε1+ε2 < ∞ for some ε1 > 0, ε2 > 0 and (1 + ε1/2)−1 < θ < 1; often θ = 1/2

(i.e., bn = b√nc and an = bn/bnc) is a convenient choice that works well in applications. Note

that the only practical difference between CBM and standard batch means is that the batch

number and size are chosen as functions of the overall run length, n. A simple R function for

implementing CBM or a faster command line C version of this function is available from the

authors upon request.

Using CBM to get an estimate of the Monte Carlo standard error (MCSE) of ḡn, say

σ̂g/
√

n, we can form an asymptotically valid confidence interval for Eπg. The half-width of

the interval is given by

tan−1
σ̂g√
n

(5)

where tan−1 is an appropriate quantile from Student’s t distribution with an − 1 degrees of

freedom.

3.2 How Many Significant Figures?

The title of the paper contains a rhetorical question; we don’t always care about the third

significant figure. But we should care about how many significant figures there are in our

estimates. Assessing the Monte Carlo error through (5) gives us a tool to do this. For

example, suppose ḡn = 0.02, then there is exactly one significant figure in the estimate,

namely the “2”, but how confident are we about it? Letting hα denote the half width given

in (5) of a (1 − α)100% interval, we would trust the one significant figure in our estimate

if 0.02 ± hα ⊆ [0.015, 0.025) since otherwise values such as Eπg = 0.01 or Eπg = 0.03 are

plausible through rounding.

More generally, we can use (5) to assess how many significant figures we have in our
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estimates. This is illustrated in the following toy example that will be used several times

throughout the rest of this paper.

3.2.1 Toy Example

Let Y1, . . . , YK be iid N(µ, λ) and let the prior for (µ, λ) be proportional to 1/
√

λ. The

posterior density is characterized by

π(µ, λ|y) ∝ λ−
K+1

2 exp



−

1
2λ

K∑

j=1

(yj − µ)2



 (6)

where y = (y1, . . . , yK)T . It is easy to check that this posterior is proper as long as K ≥ 3

and we assume this throughout. Using the Gibbs sampler to make draws from (6) requires

the full conditional densities, f(µ|λ, y) and f(λ|µ, y), which are as follows:

µ|λ, y ∼ N(ȳ, λ/K) ,

λ|µ, y ∼ IG
(

K − 1
2

,
(K − 1)s2 + K(ȳ − µ)2

2

)
,

where ȳ is the sample mean and (K−1)s2 =
∑

(yi− ȳ)2. (We say W ∼ IG(α, β) if its density

is proportional to w−(α+1)e−β/wI(w > 0).) Consider estimating the posterior means of µ and

λ. It is easy to prove that E(µ|y) = ȳ and E(λ|y) = (K − 1)s2/(K − 4) for K > 4. Thus we

do not need MCMC to estimate these quantities but we will ignore this and use the output

of a Gibbs sampler to estimate E(µ|y) and E(λ|y).

Consider the Gibbs sampler that updates λ then µ; that is, letting (λ′, µ′) denote the

current state and (λ, µ) denote the future state, the transition looks like (λ′, µ′) → (λ, µ′) →
(λ, µ). Jones and Hobert (2001) established that the associated Markov chain is geometrically

ergodic as long as K ≥ 5. If K > 10, then the moment conditions ensuring the CLT and the

regularity conditions for CBM (with θ = 1/2) hold.

Let K = 11, ȳ = 1, and (K − 1)s2 = 14 so that E(µ|y) = 1 and E(λ|y) = 2; for the

remainder of this paper these settings will be used every time we consider this example.

Consider estimating E(µ|y) and E(λ|y) with µ̄n and λ̄n, respectively and using CBM to

calculate the MCSEs for each estimate. Specifically, we will use a 95% confidence level in (5)

to construct an interval estimate. Let the initial value for the simulation be (λ1, µ1) = (1, 1).
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When we ran the Gibbs sampler for 1000 iterations we obtained λ̄1000 = 2.003 with an

MCSE of 0.055 and µ̄1000 = 0.99 with an MCSE of 0.016. Thus we would be comfortable

reporting two significant figures for the estimates of E(λ|y) and E(µ|y), specifically 2.0 and

1.0, respectively. But when we started from (λ1, µ1) = (100, 100) and ran Gibbs for 1000

iterations we obtained λ̄1000 = 13.06 with an MCSE of 11.01 and µ̄1000 = 1.06 with an MCSE

of 0.071. Thus we would not be comfortable with any significant figures for the estimate

of E(λ|y) but we would trust one significant figure (i.e., 1) for E(µ|y). Unless the MCSE is

calculated and reported a hypothetical reader would have no way to judge this independently.

3.2.2 Remarks

1. A common concern about MCSEs is that their use may require estimating Eπg much

too precisely relative to
√

varπg. Of course, it would be a rare problem indeed where we

would know
√

varπg and not Eπg. Thus we would need to estimate
√

varπg and calculate

an MCSE (via the delta method) before we could trust the estimate of
√

varπg to inform

us about the MCSE for Eπg.

2. We are not suggesting that all MCMC-based estimates should be reported in terms of

significant figures; in fact we do not do this in the simulations that occur later. Instead,

we are strongly suggesting that an estimate of the Monte Carlo standard error should

be used to assess simulation error and reported. Without an attached MCSE a point

estimate should not be trusted.

4 Stopping the Simulation

In this section we consider two formal approaches to terminating the simulation. The first is

based on calculating an MCSE and is discussed in subsection 4.1. The second is based on the

method introduced in Gelman and Rubin (1992) and is one of many so-called convergence

diagnostics (Cowles and Carlin, 1996). Our reason for choosing the Gelman-Rubin diagnostic

(GRD) is that it appears to be far and away the most popular method for stopping the

simulation. GRD and MCSE are used to stop the simulation in a similar manner. After n
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iterations either the value of the GRD or MCSE is calculated and if it isn’t sufficiently small

then we continue the simulation until it is.

4.1 Fixed-Width Methodology

Suppose we have an idea of how many significant figures we want in our estimate. Another

way of saying this is that we want the half-width of the interval (5) to be less than some

user-specified value, ε. Thus we might consider stopping the simulation when the MCSE

of ḡn is sufficiently small. This, of course, means that we may have to check whether this

criterion is met many times. It is not obvious that such a procedure will be guaranteed to

terminate the computation in a finite amount of time or whether the resulting intervals will

enjoy the desired coverage probability and half-width. Also, we don’t want to check too early

in the simulation since we will run the risk of premature termination due to a poor estimate

of the standard error.

Suppose we use CBM to estimate the Monte Carlo standard error of ḡn, say σ̂g/
√

n, and

use it to form a confidence interval for Eπg. If this interval is too large then the value of

n is increased and simulation continues until the interval is sufficiently small. Formally, the

criterion is given by

tan−1
σ̂g√
n

+ p(n) ≤ ε (7)

where tan−1 is an appropriate quantile, p(n) = εI(n < n∗) where, n∗ > 0 is fixed, I is the

usual indicator function on Z+ and ε > 0 is the user-specified half-width. The role of p is to

ensure that the simulation is not terminated prematurely due to a poor estimate of σ̂g. The

conditions which guarantee σ̂2
g is consistent also imply that this procedure will terminate in

a finite amount of time with probability one and that the resulting intervals asymptotically

have the desired coverage (see Glynn and Whitt, 1992). However, the finite-sample properties

of (5) have received less formal investigation but simulation results suggest that the resulting

intervals have approximately the desired coverage and half-width in practice (see Jones et al.,

2006).
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4.1.1 Remarks

1. The CLT and CBM require a geometrically ergodic Markov chain. This can be difficult

to check directly in any given application. On the other hand, considerable effort has

been spent establishing (2) for a number of Markov chains; see the references given at

the end of Section 2. In our view, this is not the obstacle that it was in the past.

2. The frequency with which (7) should be evaluated is an open question. Checking often,

say every few iterations, may substantially increase the overall computational effort.

3. Consider p(n) = εI(n < n∗). The choice of n∗ is often made based on the user’s

experience with the problem at hand. However, for geometrically ergodic Markov chains

there is some theory that can give guidance on this issue (see Jones and Hobert, 2001;

Rosenthal, 1995).

4. Stationarity of the Markov chain is not required for the CLT or the strong consistency

of CBM. One consequence is that burn-in is not required if we can find a reasonable

starting value.

4.1.2 Toy Example

We consider implementation of fixed-width methods in the toy example introduced in sub-

section 3.2.1. We performed 1000 independent replications of the following procedure. Each

replication of the Gibbs sampler was started from ȳ. Using (7), a replication was terminated

when the half-width of a 95% interval with p(n) = εI(n < 400) was smaller than a prespeci-

fied cutoff, ε, for both parameters. If both standard errors were not less than the cutoff, then

the current chain length was increased by 10% before checking again. We used two settings

for the cutoff, ε = 0.06 and ε = 0.04. These settings will be denoted CBM1 and CBM2,

respectively.

First, consider the estimates of E(µ|y). We can see from Figures 1a and 1b that the

estimates of E(µ|y) are centered around the truth with both settings. Clearly, the cut-off of

ε = 0.04 is more stringent and yields estimates that are closer to the true value. It should

come as no surprise that the cost of this added precision is increased computational effort; see
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Table 2. The corresponding plots for λ̄n yield the same results and are therefore excluded.

Consider CBM2. In this case, 100% of the estimates, µ̄n, of E(µ|y) and 96% of the

estimates, λ̄n, of E(λ|y) are within the specified ε = 0.04 of the truth. In every replication

the simulation was stopped when the criterion (7) for E(λ|y) dropped below the cutoff.

Similar results hold for the CBM1 (ε = 0.06) setting.

4.2 The Gelman-Rubin Diagnostic

The Gelman-Rubin diagnostic (GRD) introduced in Gelman and Rubin (1992) and refined by

Brooks and Gelman (1998) is a popular method for assessing the output of MCMC algorithms.

It is important to note that this method is also based on a Markov chain CLT (Gelman and

Rubin, 1992, p.463) and hence does not apply more generally than approaches based on

calculating an MCSE.

GRD is based on the simulation of m independent parallel Markov chains having invariant

distribution π, each of length 2l. Thus the total simulation effort is 2lm. Gelman and Rubin

(1992) suggest that the first l simulations should be discarded and inference based on the last l

simulations; for the jth chain these are denoted {X1j , X2j , X3j , . . . , Xlj} with j = 1, 2, . . . ,m.

Recall that we are interested in estimating Eπg and define Yij = g(Xij),

B =
l

m− 1

m∑

j=1

(Ȳ·j − Ȳ··)2 and W =
1
m

m∑

j=1

s2
j

where Ȳ·j = l−1
∑l

i=1 Yij , Ȳ·· = m−1
∑m

j=1 Ȳ·j and s2
j = (l − 1)−1

∑l
i=1(Yij − Ȳ·j)2. Note that

Ȳ·· is the resulting point estimate of Eπg. Let

V̂ =
l − 1

l
W +

(m + 1)B
ml

, d ≈ 2V̂

v̂ar(V̂ )
,

and define the corrected potential scale reduction factor

R̂ =

√
d + 3
d + 1

V̂

W
.

As noted by Gelman, Carlin, Stern and Rubin (2004), V̂ and W are essentially two different

estimators of varπg; not σ2
g from the Markov chain CLT. That is, neither V̂ nor W address

the sampling variability of ḡn and hence neither does R̂.
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In our examples we used the R package coda which reports an upper bound on R̂. Specif-

ically, a 97.5% upper bound for R̂ is given by

R̂0.975 =

√
d + 3
d + 1

[
l − 1

l
+ F0.975,m−1,w

(
m + 1

ml

B

W

)]
,

where F0.975,m−1,w is the 97.5% percentile of an Fm−1
w distribution, w = 2W 2/σ̂2

W and

σ̂2
W =

1
m− 1

m∑

j=1

(
s2
j −W

)2
.

In order to stop the simulation the user provides a cutoff, δ > 0, and simulation continues

until

R̂0.975 + p(n) ≤ δ . (8)

As with fixed-width methods, the role of p(n) is to ensure that we do not stop the simulation

prematurely due to a poor estimate, R̂0.975. By requiring a minimum total simulation effort

of n∗ = 2lm we are effectively setting p(n) = δI(n < n∗) where n indexes the total simulation

effort.

4.2.1 Remarks

1. A rule of thumb suggested by Gelman et al. (2004) is to set δ = 1.1. These authors also

suggest that a value of δ closer to 1 will be desirable in a “final analysis in a critical

problem” but give no further guidance. Since neither R̂ nor R̂0.975 directly estimates

the Monte Carlo error in ḡn it is unclear to us that R̂ ≈ 1 implies ḡn is a good estimate

of Eπg.

2. How large should m be? There seem to be few guidelines in the literature except that

m ≥ 2 since otherwise we cannot calculate B. Clearly, if m is too large then each chain

will be too short to achieve any reasonable expectation of convergence within a given

computational effort.

3. The initial values, Xj1, of the m parallel chains should be drawn from an “over-

dispersed” distribution. Gelman and Rubin (1992) suggest estimating the modes of π

and then using a mixture distribution whose components are centered at these modes.

12



Constructing this distribution could be difficult and is often not done in practice (Gel-

man et al., 2004, p. 593).

4. To our knowledge there has been no discussion in the literature about optimal choices

of p(n) or n∗. In particular, we know of no guidance about how long each of the parallel

chains should be simulated before the first time we check that R̂0.975 < δ or how often

one should check after that. However, the same theoretical results that could give

guidance in item 3 of Section 4.1.1 would apply here as well.

5. GRD was originally introduced simply as a method for determining an appropriate

amount of burn-in. However, using diagnostics in this manner may introduce additional

bias into the results, see Cowles, Roberts and Rosenthal (1999).

4.2.2 Toy Example

We consider implementation of GRD in the toy example introduced in subsection 3.2.1. The

first issue we face is choosing the starting values for each of the m parallel chains. Notice

that

π(µ, λ|y) = g1(µ|λ)g2(λ)

where g1(µ|λ) is a N(ȳ, λ/K) density and g2(λ) is an IG((K − 2)/2, (K − 1)s2/2) density.

Thus we can sequentially sample the exact distribution by first drawing from g2(λ), and then

conditionally, draw from g1(µ|λ). We will use this to obtain starting values for each of the

m parallel chains. Thus each of the m parallel Markov chains will be stationary and hence

GRD should be at a slight advantage compared to CBM started from ȳ.

Our goal is to investigate the finite-sample properties of the GRD by considering the

estimates of E(µ|y) and E(λ|y) as in subsection 4.1.2. To this end, we took multiple chains

starting from different draws from the sequential sampler. The multiple chains were run

until the total simulation effort was n∗ = 400 draws; this is the same minimum simulation

effort we required of CBM in the previous section. If R̂0.975 < δ for both, the simulation

was stopped. Otherwise, 10% of the current chain length was added to each chain before

R̂0.975 was recalculated. This continued until R̂0.975 was below δ for both. This simulation

procedure was repeated independently 1000 times with each replication using the same initial
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values. We considered 4 settings using the combinations of m ∈ {2, 4} and δ ∈ {1.005, 1.1}.
These settings will be denoted GRD1, GRD2, GRD3 and GRD4; see Table 1 for the different

settings along with summary statistics that will be considered later.

Upon completion of each replication, the values of µ̄n and λ̄n were recorded. Figures 1c–1f

show histograms of µ̄n for each setting. We can see that all the settings center around the

true value of 1, and setting δ = 1.005 provides better estimates. Increasing the number of

chains seems to have little impact on the quality of estimation, particularly when δ = 1.1.

Histograms of λ̄n for each setting show similar trends.

In the settings we investigated, GRD often terminated the simulations much sooner than

CBM. Table 2 shows the percentage of the 1000 replications which were stopped at their

minimum (n∗ = 400) and the percentage with less than 1000 total draws. The data clearly

shows that premature stopping was common with GRD but uncommon with CBM. This is

especially the case for GRD1 and GRD2 where over half the replications used the minimum

simulation effort.

Also, the simulation effort for GRD was more variable than that of CBM. In particular,

the average simulation effort was comparable for CBM1 and GRD3 and also CBM2 and

GRD4 but the standard errors are larger for GRD. Next, Figures 2a and 2b show a plot of

the estimates, µ̄n, versus the total number of draws in the chains for CBM2 and GRD4. The

graphs clearly show that the total number of draws was more variable using GRD4 than using

CBM2. From a practical standpoint, this implies that when using GRD we are likely to run

a simulation either too long or too short. Of course, if we run the simulation too long, we

will be likely to get a better estimate. But if the simulation is too short, the estimate can be

poor.

Let’s compare GRD and CBM in terms of the quality of estimation. Table 1 gives the

estimated mean-squared error (MSE) for each setting based on 1000 independent replications

described above. The estimates for GRD were obtained using the methods described earlier

in this subsection while the results for CBM were obtained from the simulations performed for

subsection 4.1.2. It is clear that CBM results in superior estimation. In particular, note that

using the setting CBM1 results in better estimates of E(µ|y) and E(λ|y) than using setting
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GRD4 while using approximately half the average simulation effort (2191 (19.9) versus 5365

(150.5)); see Table 2.

Consider GRD4 and CBM2. Note that these two settings have comparable average sim-

ulation effort. The MSE for µ̄n using GRD was 0.000134 (s.e.= 9.2 × 10−6) and for CBM

we observed an MSE of 0.0000373 (1.8× 10−6). Now consider λ̄n. The MSE based on using

GRD was 0.00165 (1.2× 10−4) and for CBM we observed an MSE of 0.000393 (1.8× 10−5).

Certainly, the more variable simulation effort of GRD contributes to this difference but so

does the default use of burn-in

Recall that we employed a sequential sampler to draw from the target distribution im-

plying that the Markov chain is stationary and hence burn-in is unnecessary. To understand

the effect of using burn-in we calculated the estimates of E(µ|y) using the entire simulation;

that is, we did not discard the first l draws of each of the m parallel chains. This yields an

estimated MSE of 0.0000709 (4.8 × 10−6) for GRD4. Thus, the estimates using GRD4 still

have an estimated MSE 1.9 times larger than that obtained using CBM2. The standard errors

of the MSE estimates show that this difference is still significant, indicating CBM, in terms

of MSE, is still a superior method for estimating E(µ|y). Similarly, for estimating E(λ|y) the

MSE using GRD4 without discarding the first half of each chain is 2.1 higher than that of

CBM2.

Toy examples are useful for illustration, however it is sometimes difficult to know just how

much credence the resulting claims should be given. For this reason, we turn our attention

to a setting that is “realistic” in the sense that it is similar to the type of setting encountered

in practice. Specifically, we do not know the true values of the posterior expectations and

implementing a reasonable MCMC strategy is not easy. Moreover, we do not know the

convergence rate of the associated Markov chain.

5 A hierarchical model for geostatistics

We consider a data set on wheat crop flowering dates in the state of North Dakota (Haran,

Bhat, Molineros and De Wolf, 2007). This data consists of experts’ model-based estimates
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for the dates when wheat crops flower at 365 different locations across the state. Let D be

the set of N sites and the estimate for the flowering date at site s be Z(s) for s ∈ D. Let

X(s) be the latitude for s ∈ D. The flowering dates are generally expected to be later in

the year as X(s) increases so we assume that the expected value for Z(s) increases linearly

with X(s). The flowering dates are also assumed to be spatially dependent, suggesting the

following hierarchical model:

Z(s) | β, ξ(s) = X(s)β + ξ(s) for s ∈ D ,

ξ | τ2, σ2, φ ∼ N(0, Σ(τ2, σ2, φ)),

where ξ = (ξ(s1), . . . , ξ(sN ))T with Σ(τ2, σ2, φ) = τ2I +σ2H(φ) and {H(φ)}ij = exp((−‖si−
sj‖)/φ), the exponential correlation function. We complete the specification of the model

with priors on τ2, σ2, φ, and β,

τ2 ∼ IG(2, 30), σ2 ∼ IG(0.1, 30),

φ ∼ Log-Unif(0.6, 6), π(β) ∝ 1 .

Setting Z = (Z(s1), . . . , Z(sN )), inference is based on the posterior distribution π(τ2, σ2, φ, β |
Z). Note that MCMC may be required since the integrals required for inference are an-

alytically intractable. Also, samples from this posterior distribution can then be used for

prediction at any location s ∈ D.

Consider estimating the posterior expectation of τ2, σ2, φ, and β. Unlike the toy example

considered earlier these expectations are not analytically available. Sampling from the pos-

terior is accomplished via a Metropolis-Hastings sampler with a joint update for the τ2, φ,

β via a three-dimensional independent Normal proposal centered at the current state with a

variance of 0.3 for each component and a univariate Gibbs update for σ2.

To obtain a high quality approximation to the desired posterior expectations we used a

single long run of 500,000 iterations of the sampler and obtained 23.23 (.0426), 25.82 (.0200),

2.17 (.0069), and 4.09 (4.3e-5) as estimates of the posterior expectations of τ2, σ2, φ, and β,

respectively. These are assumed to be the truth. We also recorded the 10th, 30th, 70th and

90th percentiles of this long run for each parameter.
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Our goal is to compare the finite-sample properties of GRD and CBM in terms of quality of

estimation and overall simulation effort. Consider implementation of GRD. We will produce

100 independent replications using the following procedure. For each replication we used

m = 4 parallel chains from four different starting values corresponding to the 10th, 30th,

70th and 90th percentiles recorded above. A minimum total simulation effort of 1000 (250

per chain) was required. Also, no burn-in was employed. This is consistent with our finding in

the toy example that estimation improved without using burn-in. Each replication continued

until R̂0.975 ≤ 1.1 for all of the parameter estimates. Estimates of the posterior expectations

were obtained by averaging draws across all 4 parallel chains.

Now consider the implementation of CBM. For the purpose of easy comparison with GRD,

we ran a total of 400 independent replications of our MCMC sampler, where the 10th, 30th,

70th and 90th percentiles of the parameter samples from the long run were used as starting

values for 100 replications each. Each replication was simulated for a minimum of 1000

iterations so p(n) = εI(n < 1000). Thus the minimum simulation effort is the same as that

for GRD. Using (7), a single replication (chain) was terminated when each of the half-widths

of a 95% interval was smaller than 0.5, 0.5, 0.05 and 0.05 for the estimates of the posterior

expectations of τ2, σ2, φ, and β, respectively. These thresholds correspond to reasonable

desired accuracies for the parameters. If the half-width was not less than the cutoff, then 10

iterations were added to the chain before checking again.

The results from our simulation study are summarized in Table 3. Clearly, the MSE

for estimates using GRD are significantly higher than the MSE for estimates obtained using

CBM. However, CBM required a greater average simulation effort 31,568.9 (177.73) than did

GRD 8,082 (525.7). To study whether the CBM stopping rule delivered confidence intervals

at the desired 95% levels, we also estimated the coverage probabilities for the intervals for the

posterior expectations of τ2, σ2, φ, and β, which were 0.948 (0.0112), 0.945 (0.0114), 0.912

(0.0141), and 0.953 (0.0106) respectively. The coverage for all parameters is fairly close to

the desired 95%.

Finally, we note that this simulation study was conducted on a Linux cluster using R (Ihaka

and Gentleman, 1996), an MCMC package for spatial modeling, spBayes (Finley, Banerjee

17



and Carlin, 2007), and the parallel random number generator package rlecuyer (L’Ecuyer,

Simard, Chen and Kelton, 2002).

6 Discussion

In our view, the point of this paper is that those examining the results of MCMC computa-

tions are much better off when reliable techniques are used to estimate MCSEs and then the

MCSEs are reported. An MCSE provides two desirable properties: (1) It gives useful infor-

mation about the quality of the subsequent estimation and inference; and (2) it provides a

theoretically justified, yet easily implemented, approach for determining appropriate stopping

rules for their MCMC runs. On the other hand, a claim that a test indicated the sampler

“converged” is simply nowhere near enough information to objectively judge the quality of

the subsequent estimation and inference. Discarding a set of initial draws does not necessarily

improve the situation.

A key requirement for reporting valid Monte Carlo standard errors is that the sampler

mixes well. Finding a good sampler is likely to be the most challenging part of the recipe

we describe. We have given no guidance on this other than one should look within the

class of geometrically ergodic Markov chains if at all possible. This is an important matter

in any MCMC setting; that is, a Markov chain that converges quickly is key to obtaining

effective simulation results in finite time. Thus there is still a great deal of room for creativity

and research in improving samplers but there are already many useful methods that can be

implemented for difficult problems. For example, one of our favorite techniques is simulated

tempering (Geyer and Thompson, 1995; Marinari and Parisi, 1992) but many others are

possible.
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Table 1: Summary table for all settings and estimated mean-squared-error for estimating E(µ|y)

and E(λ|y) for the toy example of Section 3.2.1. Standard errors (S.E.) shown for each estimate.

Stopping MSE for MSE for

Method Chains Rule E(µ|y) S.E. E(λ|y) S.E.

CBM1 1 0.06 9.82e-05 4.7e-06 1.03e-03 4.5e-05

CBM2 1 0.04 3.73e-05 1.8e-06 3.93e-04 1.8e-05

GRD1 2 1.1 7.99e-04 3.6e-05 8.7e-03 4e-04

GRD2 4 1.1 7.79e-04 3.7e-05 8.21e-03 3.6e-04

GRD3 2 1.005 3.49e-04 2.1e-05 3.68e-03 2e-04

GRD4 4 1.005 1.34e-04 9.2e-06 1.65e-03 1.2e-04
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Table 2: Summary of the proportion (and standard error) of the observed estimates which were

based on the minimum number (400) of draws, less than or equal to 1000 draws, and the average

total simulation effort for the toy example in Section 3.2.1.

Prop. Prop.

Method at Min. S.E. ≤ 1000 S.E. N S.E.

CBM1 0 0 0.011 0.0033 2191 19.9

CBM2 0 0 0 0 5123 33.2

GRD1 0.576 0.016 0.987 0.0036 469 4.1

GRD2 0.587 0.016 0.993 0.0026 471 4.2

GRD3 0.062 0.0076 0.363 0.015 2300 83.5

GRD4 0.01 0.0031 0.083 0.0087 5365 150.5

Table 3: Summary of estimated mean-squared error obtained using CBM and GRD for the model

of Section 5. Standard errors (S.E.) shown for each estimate.

Method GRD CBM

Parameter MSE S.E. MSE S.E.

E(τ 2|z) 0.201 0.0408 0.0269 0.00185

E(σ2|z) 0.0699 0.0179 0.00561 0.00039

E(φ|z) 0.00429 0.00061 0.000875 5.76e-05

E(β|z) 1.7e-07 3.09e-08 3.04e-08 1.89e-09
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Figure 1: Histograms from 1000 replications estimating E(µ|y) for the toy example of Section 3.2.1

with CBM and GRD. Simulation sample sizes are given in Table 2.
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(a) CBM1, with a cutoff of ε = 0.06.
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(b) CBM2, with a cutoff of ε = 0.04.
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(d) GRD3, 2 chains and δ = 1.005.
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(e) GRD2, 4 chains and δ = 1.1.
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(f) GRD4, 4 chains and δ = 1.005.
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Figure 2: Estimating E(µ|y) for the toy example of Section 3.2.1. Estimates of E(µ|y) versus

number of draws for the CBM2 and GRD4 settings.
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