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Abstract. The autologistic model is a Markov random field model
for spatial binary data. Because it can account for both statistical
dependence among the data and for the effects of potential covari-
ates, the autologistic model is particularly suitable for problems in
many fields, including ecology, where binary responses, indicating
the presence or absence of a certain plant or animal species, are
observed over a two-dimensional lattice. We consider inference and
computation for two models: the original autologistic model due
to Besag, and the centered autologistic model proposed recently
by Caragea and Kaiser. Parameter estimation and inference for
these models is a notoriously difficult problem due to the complex
form of the likelihood function. We study pseudolikelihood (PL),
maximum likelihood (ML), and Bayesian approaches to inference
and describe ways to optimize the efficiency of these algorithms
and the perfect sampling algorithms upon which they depend, tak-
ing advantage of parallel computing when possible. We conduct a
simulation study to investigate the effects of spatial dependence
and lattice size on parameter inference, and find that inference
for regression parameters in the centered model is reliable only for
reasonably large lattices (n > 900) and no more than moderate
spatial dependence. When the lattice is large enough, and the
dependence small enough, to permit reliable inference, the three
approaches perform comparably, and so we recommend the PL
approach for its easier implementation and much faster execution.

1. Introduction

Spatial binary data appear frequently in several disciplines includ-
ing ecology, agriculture, epidemiology, geography, and image analysis.
In this paper we will focus on binary data on a lattice. (See, e.g.,
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(De Oliveira, 2000) for models for binary data on a continuous spa-
tial domain.) For example, Figure 1 shows the presence of Hermit
Thrush (Catharus guttatus), a North American songbird, in Pennsyl-
vania (http://www.carnegiemnh.org/atlas/home.htm). Presence is
shown in black.

The autologistic model (Besag, 1972, 1974), which directly imposes
a joint Markov random field for the 0-1 data, has proved a very useful
model for data of this type. The model has a nearly 40-year history and
has been widely used (see, for instance, Gumpertz et al., 1997; Huffer
and Wu, 1998; Augustin et al., 1996; Koutsias, 2003; He et al., 2003;
Sanderson et al., 2005; Moon and Russell, 2008), perhaps owing to the
appeal of the model’s simple and direct specification of dependence and
the ease with which the model can be fit by maximum pseudolikelihood
estimation.

While pseudolikelihood (Besag, 1975) is a fast and convenient ap-
proach to approximate inference for the autologistic model, recent ad-
vances in computational methods have allowed for more rigorous Monte
Carlo approaches to likelihood (Geyer, 1994) and Bayesian (Møller
et al., 2006) inference in the presence of intractable normalizing func-
tions. In addition, Caragea and Kaiser (2009) recently proposed a repa-
rameterization that furnishes the autologistic model with interpretable
parameters. However, there is little guidance regarding how well these
models and algorithms work in practice as spatial dependence increases
or decreases and as the size of the lattice varies.

In this paper we conduct a careful study of autologistic modeling and
computation. In Section 2 we review models for binary data on a lat-
tice, with our focus on comparing and contrasting Besag’s traditional
autologistic model and the centered autologistic model of Caragea and
Kaiser. In Section 3 we describe efficient computing for pseudolikeli-
hood (PL), maximum likelihood (ML), and Bayesian inference for the
two models. To our knowledge, this is the first development of MCML
and rigorous Bayesian inference for the centered autologistic model.
Since the algorithm of Møller et al. requires exact samples from the
model of interest, we also develop perfect samplers for both autologistic
models, and we use those samplers to parallelize the PL and ML algo-
rithms. Section 4 gives the results of our thorough simulation study,
where we investigated the effects on inference of lattice size, degree
of dependence, edge percentage, and replication. We provide recom-
mendations regarding lattice sizes for which inference is reliable and
computation is feasible. And in Section 5 we present an analysis of
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the Hermit Thrush data. In the appendix we derive the joint distribu-
tion for the centered autologistic model, which is required for ML and
Bayesian inference.

2. Models for Binary Data on a Lattice

There are two dominant competing approaches to modeling binary
areal data: the logistic spatial generalized linear mixed model (SGLMM)
and the autologistic model. Each approach is characterized by its mod-
eling of spatial dependence. The SGLMM models dependence indi-
rectly, by way of a latent Gaussian Markov random field over the lat-
tice in question (Banerjee et al., 2004, Ch. 3). The autologistic model,
on the other hand, models dependence directly, through the so-called
autocovariate, which is a function of the observations themselves. In
this paper we will focus on the autologistic model, of which there are
two variants.

2.1. The Traditional Autologistic Model. In his seminal 1974 pa-
per, Besag proposed the automodels, which model spatial dependence
among random variables directly (rather than hierarchically) and con-
ditionally (rather than jointly). Among the automodels formulated
by Besag was the autologistic model for spatial data with binary re-
sponses. The autologistic model has since found many applications in
several fields, particularly ecology and epidemiology (Huffer and Wu,
1998; Gumpertz et al., 1997). We will henceforth refer to Besag’s for-
mulation as the traditional autologistic model, which is defined as fol-
lows.

If we let Z be the random field of interest, where Zi ∈ {0, 1} rep-
resents the observation at the ith lattice point for i = 1, . . . , n, the
full conditional distributions for the traditional autologistic model are
given by

log
P(Zi = 1)

P(Zi = 0)
= Xiβ +

∑
j 6=i

ηijZj,(1)

where Xi is the ith row of the design matrix, β are the regression
parameters, and η = {ηij} are dependence parameters such that ηij 6= 0
iff Zi and Zj are neighbors. The sum in (1) is the autocovariate, which
models the dependence between Zi and the remainder of the field, Z−i.
In an SGLMM, the autocovariate is replaced by the ith element of a
latent field of random effects.

In this paper we consider only models for which ηij = η1{i∼j} (where
1{·} denotes the indicator function and∼ denotes the neighbor relation)
and η > 0. We assume pairwise-only dependencies, i.e., we assume that
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the underlying graph has clique number 2 (Cressie, 1993). In this case
the full parameter vector is θ = (β′, η)′, and Brook’s Lemma implies
the joint distribution

π(Z |θ) = c(θ)−1 exp

(∑
i

ZiXiβ +
η

2

∑
i,j

1{i∼j}ZiZj

)
= c(θ)−1 exp

(
Z ′Xβ +

η

2
Z ′AZ

)
,

where A is an n × n adjacency matrix, i.e., Aij = 1{i∼j}, and c(θ) is
an intractable normalizing function (Brook, 1964; Cressie, 1993, Ch.
6). The normalizing function makes computation challenging for both
maximum likelihood and Bayesian inference.

We note that using Q(Z |θ) = Z ′Xβ + η
2
Z ′AZ, which is usually

called the negpotential function, allows us to write the joint density as

π(Z |θ) =
exp(Q(Z |θ))∑

Y ∈Ω exp(Q(Y |θ))
,

where the sample space, Ω, is {0, 1}n for a lattice with n points.

2.2. The Centered Autologistic Model. Caragea and Kaiser (2009)
showed that the traditional autologistic model fails to provide meaning-
ful interpretations of the model parameters—informally, the traditional
model’s non-negative autocovariate biases realizations of the field to-
ward Z = 1. They proposed a centered parameterization—reminiscent
of auto-Gaussian models (Cressie, 1993)—that remedies the problem.
Consequently, the simulation study described below focused on the cen-
tered model, and we recommend that the centered model be used in
practice.

The full conditional distributions for the centered autologistic model
are

log
P(Zi = 1)

P(Zi = 0)
= Xiβ +

∑
j 6=i

ηij(Zj − µj),(2)

where µj is the independence expectation of Zj:

µj = E(Zj |η = 0) =
exp(Xjβ)

1 + exp(Xjβ)
.

For the case where ηij = η1{i∼j}, (2) implies the joint distribution

π(Z |θ) = c(θ)−1 exp
(
Z ′Xβ − ηZ ′Aµ+

η

2
Z ′AZ

)
,

where µ is the vector of independence expectations. See the appendix
for the derivation.
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Following Caragea and Kaiser, we will henceforth refer to µ, i.e.,
the mean surface under the assumption of independence, as the large-
scale structure implied by (2). And by local structure or small-scale
structure we mean clustering induced by the dependence component of
the model.

To see why η is difficult to interpret for the traditional model, con-
sider a field under the traditional model having constant independence
expectation. Suppose that exactly one of Zi’s neighbors is equal to
1. Then Zi’s autocovariate is equal to 1, which implies an increase
in P(Zi = 1). But any meaningful autocovariate should be negative
and increase P(Zi = 0) in this situation because the majority of Zi’s
neighbors are 0. Hence, η has no clear interpretation in the traditional
model, and so neither does β.

The centered autocovariate, on the other hand, is signed and mea-
sures local structure against large-scale structure (through the inde-
pendence expectations). This captures a proper notion of dependence
and so allows us to interpret the parameters in the obvious way: η rep-
resents the “reactivity” of an observation to its neighbors, conditional
on the large-scale structure represented by the regression component of
the model, Xβ. See Caragea and Kaiser (2009) for a rigorous treatment
of interpretability of autologistic models.

3. Monte Carlo Inference for the Autologistic Models

In this section we describe efficient computational approaches to PL,
ML, and Bayesian inference for the autologistic models, following Besag
(1975), Geyer (1994), and Møller et al. (2006), respectively; Zheng and
Zhu (2008) explored these approaches in the context of the traditional
autologistic model only.

Since we make frequent use of perfect sampling, we begin with a brief
description of efficient perfect sampling for the autologistic models.

3.1. Perfect Sampling. Our algorithms rely heavily on perfect sam-
pling, for three reasons. First, the algorithm of Møller et al. requires
that we draw an exact sample during each iteration. Failure to use
a perfect sampler results in an algorithm lacking theoretical justifica-
tion and can affect the accuracy of resulting inference (Murray et al.,
2006). Second, perfect samplers for conditionally specified distribu-
tions are relatively easy to understand and to implement. And third, a
properly optimized perfect sampler is sufficiently fast to allow for the
PL analysis of large datasets.
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Our perfect samplers are based on coupling from the past (CFTP)
(Propp and Wilson, 1996). A CFTP sampler for an autologistic model
can be constructed as follows.

We want to simulate exactly from the autologistic model:

P(Zi = 1 |Z−i,θ) = pi =
exp(Xiβ + η

∑
j∼i Z

∗
j )

1 + exp(Xiβ + η
∑

j∼i Z
∗
j )
,

where Z∗j = Zj for the uncentered model and Z∗j = Zj − µj for the
centered model. The model is said to be attractive if η ≥ 0, which is
to say that the cdf, Fi, of Zi is decreasing in

∑
j∼i Z

∗
j . Note that

Fi(z) =


0 if z < 0

1− pi if 0 ≤ z < 1

1 if z ≥ 1.

Since we require non-negative η, pi is increasing in
∑

j∼i Z
∗
j , and so Fi

is in fact decreasing in
∑

j∼i Z
∗
j . For such a model, CFTP proceeds as

follows (Møller, 1999).
Let LT (t, i) and UT (t, i) denote the ith observations at time t of the

so-called lower and upper chains, respectively, where those chains were
started at time T in the past. Fix T < 0 and set LT (T, ·) = 0 and
UT (T, ·) = 1. Evolve the chains according to

LT (t, i) = F−1
i (R(t, i)) |LT (t, 1: i− 1),LT (t− 1, i+ 1: n)

UT (t, i) = F−1
i (R(t, i)) |UT (t, 1: i− 1),UT (t− 1, i+ 1: n),

where the R(t, i) are independent standard uniform variates and

F−1
i (p) =

{
0 if p ≤ 1− pi
1 if p > 1− pi.

If LT and UT coalesce at time t0 ≤ 0, return LT (0, ·) as a sample from
π(Z |θ), the joint distribution of the Zi. Otherwise, double T and start
over. Use new uniform variates for T, T + 1, . . . , T

2
− 1, but reuse the

previously generated variates for times T
2
, T

2
+ 1, . . . ,−1.

Our code was written in R (Ihaka and Gentleman, 1996). We note
that replacing loops with vector and matrix operations, which are car-
ried out by fast compiled code, reduces execution time dramatically.
Our optimized implementation generates a sample in approximately
1/6 the time required by our first, naive, implementation.

Note that the adjacency matrix, A, is sparse, but we cannot exploit
this fact to speed up the sampler because A must be accessed row by
row in order to update LT and UT element by element.
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3.2. Maximum Pseudolikelihood. The maximum pseudolikelihood
estimate (MPLE), θ̃, of the parameter vector is the value of θ that

maximizes the product of the conditional likelihoods. That is, θ̃ =
arg max `PL(θ), where

`PL(θ) =
∑
i

log
exp(Zi(Xiβ + η

∑
j∼i Z

∗
j ))

1 + exp(Xiβ + η
∑

j∼i Z
∗
j )
.(3)

Although (3) is not the true log-likelihood except in the trivial case of
independence, Besag (1975) showed that the MPLE converges almost
surely to the MLE as the lattice size goes to∞ (in density, not extent).
For the centered autologistic model, (3) is given by

Z ′(Xβ + ηA(Z − µ))−
∑
i

log(1 + exp(Xiβ + ηAi(Z − µ))).

Armed with θ̃, we do inference by way of a parallel parametric boot-
strap. That is, we generate, in parallel, B samples from π(Z | θ̃) and
compute the MPLE for each sample, thus obtaining the bootstrap sam-

ple θ̃
(1)
, . . . , θ̃

(B)
. Appropriate quantiles of the bootstrap sample are

then used to construct approximate confidence intervals for the ele-
ments of θ. We took B = 2,000 and attained Monte Carlo standard
errors on the order of 0.001, which indicates a very good approximation.

Because the bootstrap sample can be generated in parallel and little
subsequent processing is required, this approach to inference is very
efficient computationally, even for large lattices. For example, we found
that PL analysis of a 40×40 dataset requires only a few minutes while
MCML requires a few hours and the Bayesian procedure requires days
(perhaps weeks, if the dependence is strong enough). A reasonable
upper limit on the lattice size for a PL analysis is n = 40,000, for we
were able to process a dataset of this size in approximately five days on
a 64-node cluster with 3 GHz processors. We used R’s snow (Tierney
et al., 2009) package to parallelize our implementation.

3.3. Monte Carlo Maximum Likelihood. Although MPLE is straight-
forward and computationally efficient, it is known to be statistically
inefficient, and so we appeal now to the statistical efficiency (but more
demanding computation) of maximum likelihood estimation.

Here we derive the Monte Carlo maximum likelihood estimate (MCMLE)
for the centered autologistic model. Although both MPLE and MCMLE
are based on approximating π(Z |θ), the former sidesteps the intractable

normalizing constant while the latter approximates the ratio c(θ)/c(θ̃).
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More specifically, MCMLE employs the approximate log-likelihood

`M(θ) = log
h(Z |θ)

h(Z | θ̃)
− log

 1

M

M∑
i=1

h(Y i |θ)

h(Y i | θ̃)︸ ︷︷ ︸
†

 ,(4)

where h is the unnormalized likelihood, Z are the data, θ̃ is the MPLE
of θ, and Y 1, . . . ,Y M are perfect samples from the model at θ = θ̃.
Note that (†) approximates c(θ)/c(θ̃).

We maximize (4) to obtain θ̂M , the Monte Carlo maximum likelihood

estimate of θ. According to Geyer (1994), θ̂M converges almost surely

to the maximum likelihood estimate, θ̂, of θ as M → ∞. We found
that taking M = 10,000 gives approximately the same Monte Carlo
standard errors as for the bootstrap inference described in the previous
section.

For the centered autologistic model,

h(Z |θ) = exp
(
Z ′Xβ − ηZ ′Aµ+

η

2
Z ′AZ

)
,

and so (4) becomes

`M(θ) = Q(Z |θ)−Q(Z | θ̃)− log

(
1

M

M∑
i=1

exp(Q(Y i |θ)−Q(Y i | θ̃))

)
,

(5)

where Q is the negpotential function. We obtain approximate sampling

variances by taking the diagonal elements of Î
−1

M = [−∇2`M(θ̂M)]−1,

which converges to Î
−1

, the observed information matrix.
We obtain Monte Carlo standard errors as follows. Geyer (1994)

showed that
√
M(θ̂M − θ̂) ⇒ N (0,I−1ΣI−1), and so we require an

estimator of Σ, which we now develop. Let

T i(θ) =

(
∇h(Z |θ)

h(Z |θ)
− ∇h(Y i |θ)

h(Y i |θ)

)
h(Y i |θ)

h(Y i | θ̃)

= {(Z − Y i)
′X− η(Z − Y i)

′A(X • µ • (1− µ)) ,

1/2 (Z − Y i)
′A(Z − Y i)− (Z − Y i)

′Aµ}′

exp(Q(Y i |θ)−Q(Y i | θ̃)),
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where • denotes row wise multiplication (vector-vector or matrix-vector).
Then

1√
M

M∑
i=1

T i(θ) ⇒ c(θ)

c(θ̃)
N (0,Σ).

Since the sample mean from (5) estimates the ratio of normalizing
constants, we have

(
1

M

M∑
i=1

exp(Q(Y i |θ)−Q(Y i | θ̃))

)−1

1

M

M∑
i=1

T i(θ)
·∼ N

(
0,

1

M
Σ

)
.

(6)

Since the T i(θ) are iid, (6) implies that we can estimate Σ using the
sample covariance matrix of(

1

M

M∑
i=1

exp(Q(Y i |θ)−Q(Y i | θ̃))

)−1

{T i(θ)}Mi=1,

i.e.,

Σ̂M = Ĉov

( 1

M

M∑
i=1

exp(Q(Y i | θ̂M)−Q(Y i | θ̃))

)−1

{T i(θ̂M)}Mi=1

 .

Thus the estimated Monte Carlo variances are the diagonal elements

of 1
M
Î
−1

M Σ̂M Î
−1

M .
MCMLE is considerably more intensive computationally than MPLE

because MCMLE employs five times as many Monte Carlo samples
to attain the same Monte Carlo standard errors. Generating those
samples in parallel of course reduces the running time dramatically,
and the appropriate use of vector and matrix operations greatly reduces
the time required to optimize the approximate likelihood and calculate
Monte Carlo standard errors.

3.4. MCMC for Bayesian Inference. Until recently, intractable
normalizing functions made rigorous Bayesian analyses impossible for
the autologistic and other models. But Møller et al. (2006) presented
an auxiliary-variable MCMC algorithm that allows us to construct a
proposal distribution so that the normalizing constant cancels out of
the Metropolis-Hastings ratio. Employing their method requires only
that we can draw independent realizations from the unnormalized den-
sity for any value of θ, which we do by means of perfect sampling. Here
we describe their method for the centered autologistic model.
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Let h again denote the unnormalized density, let Q denote the neg-
potential function, let Y ∈ Ω denote the auxiliary variable, and let
p(·) denote a prior distribution. Then the Metropolis-Hastings random
walk acceptance probability for the algorithm of Møller et al. is given
by

α =
h(Y ∗ | θ̃)h(Z |θ∗)h(Y |θ)p(θ∗)

h(Y | θ̃)h(Z |θ)h(Y ∗ |θ∗)p(θ)

c(θ̃)

c(θ̃)

c(θ)

c(θ∗)

c(θ∗)

c(θ)

=
h(Y ∗ | θ̃)h(Z |θ∗)h(Y |θ)p(θ∗)

h(Y | θ̃)h(Z |θ)h(Y ∗ |θ∗)p(θ)
,

where Y ∗ is the proposed auxiliary variable, θ∗ = (β∗′, η∗)′ is the

proposed θ, and θ̃ is the maximum pseudolikelihood estimate of θ.
Taking logarithms and rearranging gives

logα = Q(Y ∗ | θ̃)−Q(Y ∗ |θ∗)
+Q(Z |θ∗)−Q(Z |θ)

+Q(Y |θ)−Q(Y | θ̃)

+ log p(θ∗)− log p(θ).

Explicitly, for the centered model, we have

logα = Y ∗′X(β̃ − β∗) +
η̃ − η∗

2
Y ∗′AY ∗ + η∗Y ∗′Aµ∗ − η̃Y ∗′Aµ̃

+Z ′X(β∗ − β) +
η∗ − η

2
Z ′AZ + ηZ ′Aµ− η∗Z ′Aµ∗

+ Y ′X(β − β̃) +
η − η̃

2
Y ′AY + η̃Y ′Aµ̃− ηY ′Aµ

+ log p(θ∗)− log p(θ).

Because the auxiliary proposals cannot be generated in parallel, this
Bayesian analysis is by far the most computationally expensive of the
three. Aside from optimizing the perfect sampler, we were able to
achieve a small gain in efficiency as follows.

We used a normal random walk Metropolis-Hastings algorithm, and
so our proposal for θ was trivariate normal, i.e., θ∗(k+1)|θ∗(k) ∼ N3(θ∗(k),V).
Rather than take V = I throughout, we let V = I only for a training
run of 100,000 iterations. Then we used the posterior sample covari-
ance matrix from the training run as the proposal covariance matrix
for a subsequent run of 300,000 iterations. We used the latter sample
to do inference. The training run resulted in a much better mixing
chain, which reduced the total number of iterations from > 500,000 to
400,000. Still, theoretically sound Bayesian inference (following Møller
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et al.) is impractical for large lattices because the perfect sampler
is in O(n2). Faster approximate Bayesian approaches exist but lack
theoretical justification (Hoeting et al., 2000).

4. Simulation Study

The aim of our simulation study was to thoroughly evaluate the
performance of the centered autologistic model in a regression setting.

We note that Dormann (2007) conducted a simulation study to as-
sess the performance of autologistic regression. But Dormann’s study
employed the traditional autologistic model, which has serious short-
comings and, we believe, should be supplanted by the centered autolo-
gistic model. Moreover, the lattice size in Dormann’s study was 1,108,
which is considerably larger than the typical binary areal dataset, and
Dormann evaluated the performance of the autologistic model based
on MPLE alone.

Our study applied the above mentioned MPLE, MCMLE, and Bayesian
procedures to datasets obtained from our perfect sampler for a range
of lattice sizes and values of η. We simulated each dataset from the
centered model; over square lattices of dimension 10, 20, and 40; for
η equal to 0.2, 0.6, and 1; and with β = (β1, β2)′ = (1, 1)′ and the
spatial coordinates of the lattice points as covariates. This implies the
conditional distributions

log
P(Zi = 1)

P(Zi = 0)
= xi + yi + η

∑
j∼i

(Zj − µj).(7)

The coordinates were restricted to the unit square, and so the regression
component of the model imposes a probability gradient that increases
from the origin toward (1, 1). This large-scale structure is shown in
Figure 2.

We chose the usual four-nearest-neighbor edge set for the underlying
graph, which conforms to our restriction to graphs with clique number
2.

It is left to specify priors for the Bayesian analysis. Since η ≥ 0 and
1 was the largest value of η used in our study, we assumed η ∼ U(0, 2).
And we chose β ∼ N (0, 100 I).

The results of the study are shown in Figures 3, 4, and 5. Tabulated
results are given in the appendix.

Evidently, for smaller lattices, the data contain too little information
to infer η unless η is large, and the data contain too little information to
reliably infer β irrespective of the degree of dependence (by ‘reliable’
we mean that inference is correct, i.e., a confidence interval almost
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certainly contains the true value of the parameter and rarely contains
0 unless the true value of the parameter is 0). For larger lattices,
inference for β is reliable so long as η is not too large, and inference
for η is reliable when the strength of dependence is at least moderate.

Our desire to offer guidance regarding lattice size led us to conduct
two followup studies on a 30× 30 lattice. The first study included two
additional values for η, 0.4 and 0.8. The table of results appears in
the appendix. The second study fixed η at 0.6 and computed boot-
strap confidence intervals for 1,000 simulated datasets. The resulting
coverage rates appear in Table 1. These followup studies suggest that
n = 900 is a threshold beyond which inference for the regression pa-
rameters should be valid provided that dependence is not too strong.

This finding is further supported by the plots in Figure 6. The
three plots show maximum pseudolikelihood estimates of β for square
lattices of dimension 20, 30, and 40, respectively. Each plot displays
1,000 estimates for η = 0.2 (white), 1,000 estimates for η = 0.6 (black),
and 1,000 estimates for η = 1 (gray). We see that point estimation is
poor for the 20 × 20 lattice. For the 30 × 30 lattice, point estimation
is good when η equals 0.2 or 0.6 but begins to suffer when η = 1. And
even η = 1 is not too strong to prevent good point estimation for the
40× 40 lattice.

Note the emergence of a second mode (when η = 1) as the lattice
size increases. The distribution is bimodal, with a smaller mode at
the origin, when 1) dependence can be strong enough to allow small-
scale structure to obscure large-scale structure, and 2) dependence is
not strong enough to make for poor point estimation on the whole
(as we see in the 20 × 20 case). This is not surprising; if large-scale
structure is not evident in a given dataset, the data can be explained
by dependence alone, resulting in β̃ ≈ 0. We have found that the
mass of the smaller mode can be reduced by using the estimate of β
obtained from a standard logistic regression as the starting value for
pseudolikelihood optimization.

4.0.1. Autologistic Regression Versus Standard Logistic Regression. It
is well known that failure to account for consequential dependence can
lead to biased estimators and erroneous confidence intervals. The plot
in Figure 7 shows the results of a comparison of autologistic regression
and standard logistic regression for 1,000 realizations of the centered
autologistic model on a 30× 30 lattice and with η = 0.7. We see that
standard logistic regression biased the estimator of β toward the origin
and gave confidence intervals that were considerably too small.
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4.0.2. The Effect of Edge Percentage on Autologistic Regression. Since
edge observations have fewer neighbors than their interior counterparts,
one might conjecture that, ceteris paribus, inference should become less
reliable as the percentage of edge observations increases. The plots in
Figure 8 show 1,000 values of β̃ and η̃, respectively, for each of three
edge percentages, where n = 1,600 and η = 0.7: 10% (40 × 40), 20%
(10× 160), and 40% (5× 320). Edge percentage evidently has little or
no effect on inference.

4.0.3. The Effect of Replication on Autologistic Regression. Although
the spatial analyst generally sees only one realization of a given spatial
process, we thought it prudent to investigate the effect of replication on
inference so that we might offer guidance to those fortunate enough to
have replicates. The plots in Figure 9 show 1,000 values of β̃ for two,
five, and ten replicates, where the lattice was 20× 20 and η = 0.7. We
see that even two replicates allow for reliable inference in this scenario.
Further simulation studies indicated that a sensible threshold beyond
which replication permits reliable inference is five replicates for a 10×10
lattice.

5. Application to the Hermit Thrush Data

Our simulation study suggests that this dataset is large enough to
permit sound inference (if the dependence is not too strong). Since
pseudolikelihood inference is statistically efficient for large lattices and
is far more efficient computationally than likelihood or Bayesian infer-
ence, we perform a pseudolikelihood analysis on the dataset.

The Hermit Thrush data were compiled by the 2nd Pennsylvania
Breeding Bird Atlas, a joint project of the Carnegie Museum of Nat-
ural History and the Pennsylvania Game Commission. The dataset
covers n = 4,937 locations surveyed between 2004 and 2009. The Her-
mit Thrush is a forest songbird associated primarily with mixed and
coniferous forests at higher elevations (Jones and Donovan, 1996). We
fit the following centered autologistic model to the data:

log
P(Zi = 1)

P(Zi = 0)
= β0 + β1ci + β2ei + η

∑
j∼i

(Zj − µj),(8)

where ci denotes the percentage of the ith areal unit having conifer or
mixed cover and ei denotes the average elevation of the ith unit. The
estimate of θ = (β0, β1, β2, η)′ is given in Table 2 along with bootstrap
95% confidence intervals. We see that elevation is a highly significant
predictor of Hermit Thrush presence while conifer/mixed woodland
cover is not significant (at the 0.05 level), probably because mixed
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and coniferous forests are found mainly at higher elevations in Penn-
sylvania. We note that the two predictors are only weakly correlated
(ρ̂(c, e) ≈ 0.2).

Since the dataset is large, the above mentioned inference should be
valid if the dependence is not too strong. Caragea and Kaiser (2009)
claim that, given a regular lattice and four-nearest-neighbor edge set,
large-scale structure should dominate small-scale structure when η ≤ 1,
and they suggest η = 1 as a conservative upper limit. Our simulation
study corroborates this recommendation (so long as the lattice is large
enough) but also shows that a large lattice may permit good point
estimation even when η is larger than 1. How much larger remains
an open question, but we offer the following data-based heuristic for
judging dependence strength.

Our simulations indicate that the bootstrap distribution correspond-
ing to η̃, i.e., the distribution of η̃(j), j = 1, . . . , B, is approximately
normal provided the dependence is neither too weak nor too strong.
As the strength of dependence increases, however, the distribution de-
parts from normality, and this departure tends to signal the beginning
of poor point estimation for β.

In any case, η̃ < 1 for the thrush data, and so we conclude that
regression inference is valid.

Fitting the uncentered autologistic and standard logistic models to
the thrush data yielded the estimates shown in the final two panels
of Table 2. The differences among the three estimates of β imply
considerable discrepancies among the corresponding large-scale struc-
tures. Since the traditional autologistic model tends to misrepresent
large-scale structure and the standard logistic model leads to bias when
dependence is appreciable, we conclude that the centered autologistic
model provides the best point estimate for these data. Moreover, the
standard logistic procedure finds conifer/mixed cover to be a highly sig-
nificant predictor of Hermit Thrush presence, a conclusion that hardly
seems tenable given the standard model’s propensity to underestimate
variability when dependence is consequential.

6. Discussion

In this paper we have carefully examined the traditional and centered
autologistic models along with Monte Carlo inference for these mod-
els. Because Besag’s traditional autologistic model lacks interpretable
parameters, we recommend the newly proposed centered autologistic
model of Caragea and Kaiser. Their reparameterization of the au-
tocovariate yields a model with easily interpreted parameters, which
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results in estimates of the regression parameters that accord with the
large-scale structure of the data.

We have explained in detail three approaches to inference: maxi-
mum pseudolikelihood followed by parametric bootstrap, Monte Carlo
maximum likelihood, and MCMC for rigorous Bayesian inference. Our
implementations of these algorithms employ perfect sampling, in par-
allel except for the Bayesian procedure. We compared the performance
of the three approaches in a thorough simulation study that used four
lattice sizes and up to five degrees of spatial dependence.

Our analysis found autologistic regression unreliable for lattices with
fewer than 900 points. Unfortunately, binary spatial datasets often con-
tain far fewer than 900 points, especially in ecology. But we remain
optimistic about the centered autologistic model because our simula-
tion study showed that pseudolikelihood inference, which is far easier
to understand and to implement than the MCML and Bayesian ap-
proaches, is both statistically and computationally efficient for datasets
that are large enough to permit valid inference. This happy confluence
of model interpretability; reliable inference; statistical and computa-
tional efficiency; and ease of application recommends the centered au-
tologistic model and corresponding pseudolikelihood inference to those
researchers with large binary areal datasets like the Hermit Thrush
dataset analyzed in this paper.
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Appendix

Derivation of the Negpotential Function. Here, following Kaiser
and Cressie (2000), we derive the negpotential function for the centered
autologistic model in a regression setting. We assume pairwise-only
dependencies, i.e., that the underlying graph has clique number 2, but
the extension to graphs with larger cliques is straightforward.

We start with the conditional density for Zi, which is given by

fi(Zi |Z−i,θ) = pZi
i (1− pi)1−Zi ,

where

pi =
exp(Xiβ + η

∑
j∼i(Zj − µj))

1 + exp(Xiβ + η
∑

j∼i(Zj − µj))

=
exp(Xiβ + ηAi(Z − µ))

1 + exp(Xiβ + ηAi(Z − µ))
.
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Thus the log-density, which will be important in the sequel, is

log fi(Zi |Z−i,θ) =

Zi(Xiβ + ηAi(Z − µ))− log(1 + exp(Xiβ + ηAi(Z − µ))).(9)

Since we assume pairwise-only dependencies, only the first- and second-
order H-functions are required to construct the negpotential function.
More precisely,

Q(Z) =
∑

1≤i≤n

Hi(Zi) +
∑

1≤i<j≤n

Hi,j(Zi, Zj),

where, for some suitable Z∗ ∈ Ω,

Hi(Zi) = log
fi(Zi |Z∗−i)
fi(Z∗i |Z∗−i)

(10)

and

Hi,j(Zi, Zj) = 1{i∼j} log

(
fi(Zi |Zj,Z∗−i,−j)
fi(Z∗i |Zj,Z∗−i,−j)

fi(Z
∗
i |Z∗−i)

fi(Zi |Z∗−i)

)
.(11)

Choosing Z∗ = 0 and using (9) with (10) and (11) gives

Hi(Zi) = Zi(Xiβ − ηAiµ)

Hi,j(Zi, Zj) = η1{i∼j}ZiZj.

Thus

Q(Z |θ) =
∑
i

Zi(Xiβ − ηAiµ) +
η

2

∑
i,j

1{i∼j}ZiZj

= Z ′Xβ − ηZ ′Aµ+
η

2
Z ′AZ,

which implies the joint distribution

π(Z |θ) =
exp(Q(Z |θ))∑

Y ∈Ω exp(Q(Y |θ))
.

For the traditional autologistic model, the second-order H-functions
are the same while the first-order functions are given by Hi(Zi) =
ZiXiβ. Consequently, the negpotential function for the traditional
model is

Q(Z |θ) =
∑
i

ZiXiβ +
η

2

∑
i,j

1{i∼j}ZiZj

= Z ′Xβ +
η

2
Z ′AZ.

Tabulated Results of Our Simulation Study. E-mail address: JPH264@PSU.EDU
E-mail address: MHARAN@STAT.PSU.EDU
E-mail address: CARAGEA@STAT.IASTATE.EDU
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Figure 1. Hermit Thrush presence in Pennsylvania,
2004-2009. Black dots indicate presence.
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Figure 2. The probability gradient imposed by the re-
gression component of our study.
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Figure 3. (10 × 10 lattice) The three approaches—
MPLE, MCMLE, Bayes—perform about equally poorly
for a lattice of this size. MCMLE yields the narrow-
est confidence intervals for β1 and β2, but the intervals
for all three procedures generally cover 0. The Bayesian
approach gives the narrowest intervals for η, and this
procedure alone was able to find statistically significant
dependence among the data, but the significance is only
marginal. A solid black line marks the true parameter
value in each panel.
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Figure 4. (20× 20 lattice) The three procedures again
performed comparably (and poorly) with respect to β,
but the Bayesian procedure once again gave the narrow-
est intervals for η and was the only approach capable of
finding significant dependence when the dependence was
small to moderate. All three approaches provided reli-
able inference for η when η = 1, but a high degree of
dependence is likely to prevent recovery of the regression
parameters.
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Figure 5. (40 × 40 lattice) The Bayesian procedure is
impractical for a lattice this large. MPLE and MCMLE
performed comparably. We note that η = 1 posed little
problem for this larger lattice.
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Table 1. These results are for 1,000 simulated 30× 30
datasets with η = 0.6. The second column shows the
coverage rates for the 95% bootstrap confidence inter-
vals, the third column gives standard errors, and the fi-
nal column gives a Type II error rate for each of β1 and
β2, i.e., the proportion of the intervals that covered 0.

Parameter Coverage Rate SE Type II Error Rate

β1 95.3% 0.007 3.8%
β2 96.1% 0.006 5.1%
η 95.1% 0.007 NA
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Figure 6. MPLEs of β for 20×20, 30×30, and 40×40
lattices, respectively. Each plot shows 1,000 estimates
for each of three values of η: 0.2 (white), 0.6 (black),
and 1 (gray).

Table 2. Results from fitting the centered autologistic,
traditional autologistic, and standard logistic models to
the Hermit Thrush data shown in Figure 1.

Model Parameter Estimate CI

Centered

β0 -2.18 (-2.345, -2.105)
β1 0.000555 (-0.00955, 0.0107)
β2 0.00736 (0.00606, 0.00866)
η 0.668 (0.644, 0.692)

Traditional

β0 -2.86 (-3.01, -2.71)
β1 0.00686 (-0.00202, 0.0157)
β2 0.00343 (0.00256, 0.00430)
η 0.656 (0.610, 0.702)

Logistic
β0 -0.736 (-0.811, -0.661)
β1 0.0288 (0.0218, 0.0358)
β2 0.00951 (0.00889, 0.0101)
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Figure 7. Comparison of standard logistic regression
and autologistic regression for a 30 × 30 lattice and
η = 0.7. The autologistic estimates are shown in gray,
the standard logistic estimates in black. The inner white
ellipse shows the mean asymptotic 95% confidence region
for β for the standard logistic model. The outer ellipse
shows the sample 95% confidence region. Note that, for
this scenario, standard logistic regression biased β̂1 and
β̂2 by 14.2% and 12.7%, respectively, while the PL esti-
mators were biased by 0.2% and 2.2%.

Table 3. The results of our simulation study for a 10×
10 lattice.

η Parameter MPLE PL CI MCMLE ML CI Posterior Mean Bayes CI

0.2
β1 0.482 (-0.977, 1.941) 0.461 (-0.799, 1.720) 0.523 (-0.841, 2.004)
β2 0.895 (-0.582, 2.373) 0.894 (-0.375, 2.163) 0.964 (-0.468, 2.410)
η 0.272 (0, 1.025) 0.270 (-0.406, 0.946) 0.513 (0.012, 0.980)

0.6
β1 0.753 (-0.921, 2.428) 0.748 (-0.658, 2.155) 0.853 (-0.706, 2.331)
β2 1.590 (-0.379, 3.560) 1.585 (0.150, 3.021) 1.683 (0.212, 3.300)
η 0.266 (0, 1.378) 0.328 (-0.493, 1.149) 0.555 (0.026, 1.054)

1
β1 2.144 (-0.034, 4.321) 2.052 (0.558, 3.546) 2.205 (0.776, 3.934)
β2 -0.101 (-1.803, 1.601) -0.115 (-1.475, 1.244) -0.033 (-1.597, 1.355)
η 0.410 (0, 1.406) 0.390 (-0.395, 1.175) 0.594 (0.031, 1.103)
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Figure 8. Edge percentage has little or no effect on in-
ference. Estimates for 10% are shown in white, estimates
for 20% are shown in black, and estimates for 40% are
shown in gray.
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Figure 9. Replication has a dramatic effect on infer-
ence. Estimates for two replicates are shown in gray,
estimates for five replicates are shown in black, and esti-
mates for ten replicates are shown in white.
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Table 4. The results of our simulation study for a 20×
20 lattice.

η Parameter MPLE PL CI MCMLE ML CI Posterior Mean Bayes CI

0.2
β1 1.287 (0.596, 1.978) 1.272 (0.621, 1.923) 1.306 (0.644, 1.990)
β2 0.556 (-0.101, 1.213) 0.553 (-0.076, 1.182) 0.571 (-0.070, 1.172)
η 0.219 (0, 0.563) 0.196 (-0.161, 0.554) 0.280 (0.013, 0.540)

0.6
β1 1.319 (0.540, 2.098) 1.292 (0.591, 1.993) 1.309 (0.597, 2.033)
β2 1.004 (0.247, 1.761) 1.023 (0.333, 1.714) 1.041 (0.361, 1.736)
η 0.312 (0, 0.699) 0.295 (-0.090, 0.679) 0.349 (0.034, 0.651)

1
β1 -1.726 (-3.882, 0.429) -1.257 (-3.029, 0.515) -1.089 (-2.361, 0.302)
β2 3.049 (-0.037, 6.134) 2.613 (1.347, 3.879) 2.476 (1.471, 3.634)
η 1.099 (0.825, 1.460) 1.033 (0.835, 1.232) 1.032 (0.847, 1.186)

Table 5. The results of our simulation study for a 40×
40 lattice.

η Parameter MPLE PL CI MCMLE ML CI

0.2
β1 1.091 (0.793, 1.390) 1.093 (0.784, 1.401)
β2 1.037 (0.733, 1.341) 1.036 (0.731, 1.341)
η 0.008 (0, 0.183) 0.008 (-0.179, 0.196)

0.6
β1 0.988 (0.601, 1.376) 1.012 (0.624, 1.400)
β2 1.016 (0.626, 1.405) 0.988 (0.601, 1.375)
η 0.532 (0.364, 0.691) 0.527 (0.362, 0.693)

1
β1 1.034 (0.336, 1.732) 0.875 (0.338, 1.412)
β2 0.749 (0.054, 1.443) 0.897 (0.328, 1.465)
η 0.947 (0.798, 1.074) 0.946 (0.900, 0.991)
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Table 6. (30×30 lattice) All three approaches perform
reasonably well on a lattice of this size, provided the
dependence is not too strong.

η Parameter MPLE PL CI MCMLE ML CI Posterior Mean Bayes CI

0.2
β1 0.987 (0.516, 1.458) 0.983 (0.550, 1.417) 0.995 (0.589, 1.448)
β2 1.291 (0.781, 1.801) 1.297 (0.858, 1.735) 1.297 (0.873, 1.713)
η 0.155 (0, 0.434) 0.154 (0.039, 0.270) 0.206 (0.013, 0.400)

0.4
β1 0.858 (0.348, 1.368) 0.824 (0.360, 1.288) 0.836 (0.370, 1.302)
β2 1.234 (0.699, 1.769) 1.267 (0.796, 1.738) 1.270 (0.812, 1.728)
η 0.377 (0.122, 0.622) 0.343 (0.107, 0.578) 0.357 (0.124, 0.589)

0.6
β1 1.108 (0.510, 1.706) 1.131 (0.631, 1.632) 1.134 (0.665, 1.621)
β2 1.025 (0.463, 1.587) 1.022 (0.515, 1.528) 1.028 (0.560, 1.515)
η 0.495 (0.238, 0.741) 0.500 (0.403, 0.598) 0.520 (0.303, 0.736)

0.8
β1 1.140 (0.203, 2.077) 1.266 (0.716, 1.816) 1.238 (0.684, 1.760)
β2 0.871 (0.016, 1.725) 0.753 (0.169, 1.338) 0.828 (0.219, 1.407)
η 0.767 (0.554, 1.150) 0.772 (0.683, 0.860) 0.840 (0.671, 0.998)

1
β1 0.604 (-0.260, 1.467) 0.644 (-0.048, 1.336) 0.638 (-0.059, 1.306)
β2 0.614 (-0.243, 1.470) 0.670 (-0.021, 1.360) 0.665 (-0.026, 1.338)
η 0.811 (0.623, 1.008) 0.822 (0.682, 0.961) 0.832 (0.667, 0.983)
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